首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
To investigate hierarchy in human prostate epithelial cells, we generated recombinant lentiviruses, infected primary cultures and cell lines, and followed their fate in vitro. The lentiviruses combined constitutive promoters including CMV and β-actin, or late-stage differentiation promoters including PSCA (prostate stem cell antigen) and PSAPb (prostate specific antigen/probasin) driving expression of monomeric, dimeric and tetrameric fluorescent proteins. Significantly, rare CD133+ cells from primary prostate epithelial cultures were successfully infected and activation of late-stage promoters was observed in basal epithelial cultures following induction of differentiation. Lentiviruses also infected CD133+ cells within the P4E6 cell line. However, promoter silencing was observed in several cell lines (P4E6, BPH-1, PC3). We examined the promoter methylation status of the lentiviral insertions in heterogeneously fluorescent cultures from PC3 clones and found that DNA methylation was not the primary mechanism of silencing of the CMV promoter. We also describe limitations to the lentivirus system including technical challenges due to low titers and low infection efficiency in primary cultures. However, we have identified a functional late-stage promoter that indicates differentiation from a basal to a luminal phenotype and demonstrate that this strategy for lineage tracking of prostate epithelial cells is valid with further optimisation.  相似文献   

2.
Castrated male rats were treated with the reversible S1-phase cell cycle blocking drug, mimosine, and the effects of this drug on prostate cell apoptosis was characterized. At a single dose of mimosine (25 mg/kg/day), we found that the internucleosomal DNA fragmentation associated with apoptosis was partially suppressed in the rat ventral prostate at all early time points (24, 48 and 72 h) analyzed post-castration. This suppression was dose-dependent, and treatment with mimosine up to 150 mg/kg/day was sufficient to reduce the internucleosomal DNA fragmentation in the prostate by 90% at 72 h post-castration. Intriguingly, this drug did not suppress the induction of mRNAs for several apoptosis-associated gene products in the ventral prostate gland (bcl-2, p53, TGF-beta and SGP-2/clusterin). Moreover, this treatment did not suppress the histological appearance of apoptotic bodies in the ventral prostate detectable by fast green staining of thin sections of tissue. The apoptotic bodies present in mimosine-treated regressing ventral prostate tissues, however, were refractory to labeling by the in situ gap labeling method, further demonstrating lack of nuclear DNA fragmentation in the condensed nuclei of apoptotic cells. In summary, the cell cycle-blocking drug mimosine does not appear to affect the rate of apoptosis in the regressing rat ventral prostate gland. However, this drug was capable of suppressing the nuclear DNA fragmentation associated with androgen-regulated prostate cell apoptosis. These results support the concept that nuclear DNA fragmentation is not obligatory for apoptosis. Additionally, they imply that cell cycle movement from the G1/S-phase boundary might be important for the terminal DNA degradation associated with androgen-regulated prostate cell apoptosis.  相似文献   

3.
We studied DNA metabolism (synthesis and degradation) in brain to investigate the effect of hyperphenylalaninemia induced in rats by treatment with PCPA or MPA plus PHE during suckling (4th–20th days of postnatal age) on cell proliferation and naturally occurring cell death. The incorporation of14C in DNA as percent of total radioactivity in the tissue, 30 min after administration of [14C]thymidine served as a measure of DNA synthesis in vivo, and the amount of radioactivity recovered in DNA as percent of total14C in the tissues of 21 day old rats, injected with [14C]thymidine on 2nd day after birth, indicated the turnover (degradation) of DNA. The results showed that the DNA content of cerebellum as well as cerebrum was reduced by treatment with PCPA plus PHE, while treatment with MPA plus PHE had no effect on DNA content in cerebellum but reduced the levels in cerebrum. Treatment with PCPA or MPA plus PHE reduced the synthesis of DNA in cerebrum of 11 day old rats but not in 21 day old rats, and the treatments did not affect DNA synthesis in cerebellum of either 11 or 21 day old rats. The turnover (degradation) of DNA was increased in both cerebellum and cerebrum from rats treated with PCPA plus PHE but MPA plus PHE treatment did not alter the DNA turnover either in cerebellu or in cerebrum. The activity of acid DNase was reduced in both cerebellum and cerebrum from 11 as well as 21 day old rats treated with PCPA plus PHE, but the enzyme activity was not altered in the tissues from rats of both ages treated with MPA plus PHE. The data thus indicate that in rats treated with PCPA plus PHE the reduction in cerebral DNA levels occurs due to reduced synthesis and/or increased turnover (degradation) of DNA but that the reduction in cerebellar DNA may occur only as a result of increased turnover (degradation), and that in rats treated with MPA plus PHE the reduction in cerebral DNA must occur due to reduced synthesis. This suggests that treatment of rats with PCPA plus PHE during suckling inhibits cell proliferation and/or increases naturally occurring cell death in both cerebellum and cerebrum while treatment with MPA plus PHE inhibits only cell proliferation and in cerebrum alone.  相似文献   

4.
Apoptotic and non-apoptotic cell death in hormone-dependent glands   总被引:1,自引:0,他引:1  
The proliferation of cells and cell death are involved in the maintenance of appropriate tissue homeostasis. In the present study, two different mechanisms of cell death were identified in the prostate and pituitary glands when morphological data, fragmentation of DNA, and TUNEL labelling of apoptotic nuclei were compared. Typical cell death by apoptosis was identified by morphological and molecular approaches in the prostate after orchidectomy. By contrast, neither DNA fragmentation nor TUNEL labelling were found in dead cells occurring in the pituitary gland after interruption of lactation. Regressing lactotrophs were characterised by condensation and disruption of the cytoplasmic matrix, but preserved intact nuclei until advanced stages of regression. Degenerating “dark” cells comparable to those described in the pituitary were also seen coexisting with typical apoptosis in the prostate epithelial lining of orchidectomised rats. Both forms of cell death could be clearly differentiated, because dark cells suffer severe alterations of cytoplasmic organelles while maintaining the integrity of the nucleus. In contrast, apoptotic cells present well-preserved cytoplasmic organelles, but grossly disrupted nuclei with fragmentation and condensation of chromatin.  相似文献   

5.
In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGFβ1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10−4 M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGFβ1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.  相似文献   

6.
The in vivo time course of the morphological changes and DNA degradation in castration-induced apoptotic prostate cells was studied from the earliest to the latest stage of the degeneration process. To study this problem, we first induced apoptotic prostate cells in rats by castration for 3 days and then promptly and continuously blocked the death of healthy prostatic cells in the castrated rats by in vivo testosterone replacement. Because testosterone replacement could not stop the irreversible lysis of already damaged prostate cells, apoptotic cells at different stages of the degeneration process were eliminated sequentially from the prostate after the healthy prostate cells had been protected. Prostate cells at the earliest stage of apoptosis at the time when the castrated rats received testosterone replacement disappeared last. By tracing the morphological and DNA degradation of apoptotic cells after hormone treatment, we estimated the time course of prostate cell death from the early to the final stage. In the morphological evolution of apoptotic prostate cells, the clumping of nuclear chromatin, the degeneration of cytoplasm and the involution of the cell surface occurred and progressed simultaneously, resulting in the rapid formation of apoptotic bodies that were gradually digested by other cells. The DNA ladders of apoptotic cells were progressively cleaved into a mononucleosomal subunit that was further degraded at an additional site, generating a heterogeneous population of small nucleotides. The final digestion of DNA fragments occurred within the apoptotic bodies. The whole course of prostate cell death after castration took about 44 h.  相似文献   

7.
Regucalcin (RGN/SMP30) was originally discovered in 1978 as a calcium-binding protein that does not contain the EF-hand motif of as a calcium-binding domain. The name, regucalcin, was proposed for this calcium-binding protein, which can regulate various Ca2+-dependent enzymes activation in liver cells. The regucalcin gene is localized on the X chromosome, and its expression is mediated through many signaling factors. Regucalcin plays a pivotal role in regulation of intracellular calcium homeostasis in various cell types. Regucalcin also has a suppressive effect on various signaling pathways from the cytoplasm to nucleus in proliferating cells and regulates nuclear function in including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) synthesis. Overexpression of endogenous regucalcin was found to suppress apoptosis in modeled rat hepatoma cells and normal rat kidney proximal epithelial NRK52 cells induced by various signaling factors. Suppressive effect of regucalcin on apoptosis is related to inhibition of nuclear Ca2+-activated DNA fragmentation, Ca2+/calmodulin-dependent nitric oxide synthase, caspase-3, Bax, cytochrome C, protein tyrosine kinase, protein tyrosine phosphatase in the cytoplasm and nucleus. Moreover, regucalcin stimulates Bcl-2 mRNA expression and depresses enhancement of caspase-3, Apaf-1 and Akt-1 mRNAs expression. This review discusses that regucalcin plays a pivotal role in rescue of apoptotic cell death, which is mediated through various signaling factors.  相似文献   

8.
A series of 241-norbrassinolide biosynthetic precursors containing 3??-OH, 3-keto, ??2- or 2??,3??-epoxy functional groups less polar than 2??,3??-diol group in A-ring, and (22R,23R)-diol group in the side chain, was synthesized. Their biological activity as the proliferation regulators in MCF-7 human breast cancer and LNCaP human prostate adenocarcinoma cells was studied. It was shown that the majority of the derivatives obtained effectively suppress cell proliferation. The dependence of proliferation on the concentration of the studied compounds was found in LNCaP human prostate adenocarcinoma cells (IC50 = 13?C28 ??M at 72 h of incubation in a medium containing 10% FBS, and suppression of DNA biosynthesis). Some compounds stimulated apoptosis (23?C33%), blocked the cell cycle in S- and G2/M-phases, and induced a partial detachment of cells during a prolonged incubation.  相似文献   

9.
Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways.  相似文献   

10.
Chinese hamster cells were synchronized by mitotic shake off, labeled in the first S period with 125IUdR, cooled to 4 °C in the G2 stage and then stored up to 4 days to accumulate damage due to 125I disintegrations in cell DNA. There was a large difference in the efficiency of induction of reproductive death when damage accumulated in the DNA, which replicated in the second half of the DNA synthesis period, was compared with damage accumulated in the DNA, which replicated in the first half of the DNA synthesis period. Damage accumulated in the late replicated DNA appears to be the most critical. This result suggests that the mammalian cell nucleus is not homogeneous with respect to the damaging events leading to reproductive death and may stress the importance for cell survival of the integrity of the late-replicating, heterochromatic DNA near the nucleus membrane.  相似文献   

11.
Multipotential bone marrow mesenchymal stem cells (BMSCs) are important in maintaining the microenvironment of the bone marrow (BM). Sympathetic nerves histologically innervate the BM; however, their role remains unclear. In this study, the effects of norepinephrine on DNA synthesis and the related signaling molecules involved in rBMSCs were examined.mRNA levels of the α1-adrenergic receptor subtypes increased following norepinephrine stimulation (10−5 M for 30 min). DNA synthesis increased in dose- and time-dependent manners as determined by [3H]thymidine incorporation. Intracellular Ca2+ concentration and translocation of protein kinase C from the cytosol to the membrane were also found to be elevated in rBMSCs. Phentolamine was able to suppress translocation of PKC. Norepinephrine also induced phosphorylation of ERK1/2, which was prevented by staurosporine treatment. Pretreatment with PD98059 inhibited ERK1/2 phosphorylation and DNA synthesis in rBMSCs.These findings indicate that norepinephrine stimulates DNA synthesis via α1-adrenergic receptors and downstream Ca2+/PKC and ERK1/2 activation in rBMSCs.  相似文献   

12.
Erythropoiesis has been studied in three patients with sideroblastic anaemia and one case of erythraemic myelosis. The marrows showed erythroid hyperplasia, plasma iron turnover was high, red cell iron utilization low, and retention of 59Fe prolonged in the marrow. A combined quantitative cytochemical and autoradiographic analysis showed an accumulation of early polychromatic cells in G2 and the presence of several cells which were apparently arrested after a period in DNA synthesis. DNA synthesis was rarely seen in cells with pronounced siderotic deposits. These results indicate the presence of ineffective erythropoiesis with a disturbance in the progress of early polychromatic cells through interphase, probably leading to intra-marrow cell death. In erythraemic myelosis there was also a reduced red cell production due to faults of cell division; the nature and consequence of the bizarre forms of cell replication are discussed.  相似文献   

13.
The long‐term propagation of basal prostate progenitor cells ex vivo has been very difficult in the past. The development of novel methods to expand prostate progenitor cells in vitro allows determining their cell surface phenotype in greater detail. Mouse (Lin?Sca‐1+ CD49f+ Trop2high‐phenotype) and human (Lin? CD49f+ TROP2high) basal prostate progenitor cells were expanded in vitro. Human and mouse cells were screened using 242 anti‐human or 176 antimouse monoclonal antibodies recognizing the cell surface protein profile. Quantitative expression was evaluated at the single‐cell level using flow cytometry. Differentially expressed cell surface proteins were evaluated in conjunction with the known CD49f+/TROP2high phenotype of basal prostate progenitor cells and characterized by in vivo sandwich‐transplantation experiments using nude mice. The phenotype of basal prostate progenitor cells was determined as CD9+/CD24+/CD29+/CD44+/CD47+/CD49f+/CD104+/CD147+/CD326+/Trop2high of mouse as well as human origin. Our analysis revealed several proteins, such as CD13, Syndecan‐1 and stage‐specific embryonal antigens (SSEAs), as being differentially expressed on murine and human CD49f+ TROP2+ basal prostate progenitor cells. Transplantation experiments suggest that CD49f+ TROP2high SSEA‐4high human prostate basal progenitor cells to be more potent to regenerate prostate tubules in vivo as compared with CD49f+ TROP2high or CD49f+ TROP2high SSEA‐4low cells. Determination of the cell surface protein profile of functionally defined murine and human basal prostate progenitor cells reveals differentially expressed proteins that may change the potency and regenerative function of epithelial progenitor cells within the prostate. SSEA‐4 is a candidate cell surface marker that putatively enables a more accurate identification of the basal PESC lineage.  相似文献   

14.
The effect of regucalcin, a Ca2+-binding protein isolated from rat liver cytosol, on deoxyribonucleic acid (DNA) synthesis in the nuclei of regenerating rat liver was investigated. At 1 day after partial hepatectomy, the liver weight was increased about 50% of that of sham-operated rats, and it reached to the same levels as sham operation at 3 days after hepatectomy. Nuclear DNA synthesis was markedly increased at 1 day after hepatectomy, and this increase was also seen at 3 days. Nuclear DNA synthesis was clearly enhanced in the presence of EGTA (0.4 mM) in the incubation mixture. The presence of Ca2+ ( 1.0–25 M) caused a significant decrease in the nuclear DNA synthesis of normal rat liver. Regucalcin (0.25 and 0.5 M) clearly inhibited the nuclear DNA synthesis of normal rat liver. This inhibition was also seen in the presence of Ca2+ (1.0 M). Moreover, in the liver nuclei obtained at 1 day after partial hepatectomy, the presence of regucalcin (0.05–0.5 M) caused a remarkable inhibition of nuclear DNA synthesis. This effect was also revealed in the presence of EGTA (0.4 mM). Thus, the inhibitory effect of regucalcin was remarkable in regenerating rat liver nuclei in comparison with that of normal rat liver. The present results demonstrate that regucalcin can suppress nuclear DNA synthesis in regenerating rat liver. We suppose that regucalcin may have a role in the regulation of nuclear DNA synthesis in liver cell proliferation.  相似文献   

15.
《Life sciences》1996,59(14):1103-1108
Some metabolites and products of mevalonic acid are involved in various cellular functions, particularly cell growth. In this study, we assessed the effects of pravastatin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, on cell viability and DNA production of rat hepatocytes stimulated with epidermal growth factor. Pravastatin (0.1 to 10μM) induced a dose-dependent reduction of DNA synthesis, assessed by 3H-thymidine incorporation in rat hepatocytes, which dropped by approximately 60% al a drug concentration of 10 μM. This suppression of DNA synthesis was nearly reversed by exogenous mevalonic acid, but was not prevented by purified low-density lipoprotein cholesterol. Pravastatin did not affect the mitochondrial reduction of Dimethylthiazolyl-diphenyl-tetrazolium bromide (MTT), but induced apoptotic change as assessed by nuclear chromatin staining. This apoptolic change was also reversed by exogenous mevalonic acid. These results indicate that mevalonic acid metabolites are necessary for DNA synthesis by rat hepatocytes stimulated by epidermal growth factor and for suppressing cell death.  相似文献   

16.
Mild abrasion of rat tracheal epithelium results in irreversible damage to the superficial cells and stimulates the viable basal cells to participate in a nearly synchronous wave of DNA synthesis and mitosis. For the growth population as a whole, DNA synthesis started at 14 hr after injury and persisted for 16 hr. The duration of S in individual cells was determined autoradiographically by identifying the time at which a second pulse of DNA precursor (14C-TdR) was no longer incorporated by cells labelled with 3H-TdR at the onset of S. S was found to be 8–9 hr long. It was also determined that cells entering S at later times synthesized DNA for the same 8–9 hr period. TG2 was calculated to be 21/2–31/2 hr by subtraction of Ts and 1/2TM from the period from onset of DNA synthesis to metaphase. By making a second denuding lesion adjacent to the first injury, the cells were stimulated through at least another period of S. At the peak of the second wave of DNA synthesis (50 hr after injury) 14C-TdR was present in the same cells which had incorporated 3H-TdR administered at the mid-point of the preceding synthetic phase. The 28-hr interval between these two peaks of synthesis is the measure of cell cycle duration for these regenerating tracheal epithelial cells.  相似文献   

17.
Effects of a single dose of naloxone and of D-Met2-Pro5-enkephalinamide on the DNA synthesis in the forebrain, hypothalamus and cerebellum of 11 day old female rats were studied. As an index of DNA synthesis the rate of incorporation of 3H-thymidine into DNA was measured 30 min after a sc. injection of 40 μCi/100 g b.w.. A time dependent effect of naloxone administration on cerebral DNA synthesis was observed. In the forebrain at 1 and 3 hrs after naloxone injection an increased rate of 3H-thy-midine incorporation into DNA was found followed by a marked decrease at 9 and 12 hrs. The effect in the hypothalamus was similar but the initial increase at 1 hr was absent. On cerebellar DNA synthesis naloxone had no effect. The administration of D-Met2-Pro5-enkephalinamide resulted in a marked reduction in the labelling of cerebral and hypothalamic DNA between 1 to 12 hrs. Except a decrease at 1 hr no effect was found in the cerebellum.  相似文献   

18.
19.
Though the current therapies are effective at clearing an early stage prostate cancer, they often fail to treat late-stage metastatic disease. We aimed to investigate the molecular mechanisms underlying the anticancer effects of a natural triterpenoid, ganoderic acid DM (GA-DM), on two human prostate cancer cell lines: the androgen-independent prostate carcinoma (PC-3), and androgen-sensitive prostate adenocarcinoma (LNCaP). Cell viability assay showed that GA-DM was relatively more toxic to LNCaP cells than to PC-3 cells (IC50s ranged 45-55 µM for PC-3, and 20-25 µM for LNCaP), which may have occurred due to differential expression of p53. Hoechst DNA staining confirmed detectable nuclear fragmentation in both cell lines irrespective of the p53 status. GA-DM treatment decreased Bcl-2 proteins while it upregulated apoptotic Bax and autophagic Beclin-1, Atg5, and LC-3 molecules, and caused an induction of both early and late events of apoptotic cell death. Biochemical analyses of GA-DM-treated prostate cancer cells demonstrated that caspase-3 cleavage was notable in GA-DM-treated PC-3 cells. Interestingly, GA-DM treatment altered cell cycle progression in the S phase with a significant growth arrest in the G2 checkpoint and enhanced CD4 + T cell recognition of prostate tumor cells. Mechanistic study of GA-DM-treated prostate cancer cells further demonstrated that calpain activation and endoplasmic reticulum stress contributed to cell death. These findings suggest that GA-DM is a candidate for future drug design for prostate cancer as it activates multiple pathways of cell death and immune recognition.  相似文献   

20.
Exposure to Hg2+ at a wide range of concentrations (approximately 1–100 μM) more or less caused the death of murine thymic T-lymphocytes, and exposure to 1 μM but not 10 μM (or more) of Hg2+ induced DNA fragmentation. Exposure of cells to Hg2+ caused phosphorylation of multiple cellular proteins at the tyrosine residue in a concentration-dependent manner. We found that not only the DNA fragmentation induced by 1 μM Hg2+ but also the cell death bypassing DNA fragmentation caused by 10 μM or more Hg2+ was partly inhibited by protein kinase inhibitors such as staurosporine and herbimycin A. This result suggested the involvement of a protein phosphorylation-linked signal in the mechanism of the Hg2+-mediated cell death with or without DNA fragmentation. Analysis of proteins by both one- and two-dimensional electrophoresis and immunoblot showed that a 52-kDa Shc protein was heavily phosphorylated by an early signal delivered by a high concentration of Hg2+, which also phosphorylated extracellular signal-regulated kinase 1 (ERK1; p44) and ERK2 (p42) of the mitogen-activated protein kinase (MAPK) family in a concentration- and time-dependent manner. The c-Jun amino terminal kinase (p54), which is a distant relative of the MAPK family, was also phosphorylated by the treatment with Hg2+. This eventually formed the signaling cascade that ended with a nuclear target by phosphorylating c-jun at the serine 73. This phosphorylation of c-jun was inhibited by staurosporine. These results suggest that a high level of Hg2+-mediated protein phosphorylation-linked signal induces rapid cell death bypassing DNA fragmentation, whereas a lower level induces cell death accompanying DNA fragmentation. This conclusion in turn implies that DNA fragmentation is not always a prerequisite for the signal transduction-dependent cell death of T-lymphocytes. J. Cell. Biochem. 71:243–253, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号