首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Texas brown tide alga (strain TBA-2) is described as Aureoumbra lagunensis Stockwell, DeYoe, Hargraves, et Johnson, gen. et sp. nov. Pigment composition, chloroplast structure, and 18s ribosomal RNA gene sequence data indicate that A. lagunensis and the east coast brown tide alga Aureococcus anophagefferens (originally placed in the Chrysophyceae) belong in the class Pelagophyceae. The new genus Aureoumbra with A. lagunensis as the type species differs from Aureococcus in 18s ribosomal RNA gene sequence, pyrenoid form, nitrogen physiology, and possession of basal bodies. The genus Aureococcus is placed in the order Pelagomonadates and family Pelagomonadaceae while ordinal placement of Aureoumbra is deferred.  相似文献   

2.
Pihiella liagoraciphila gen. et sp. nov. (Rhodophyta) is described for a minute endo/epiphyte that is commonly associated with members of the Liagoraceae ( Nemaliales, Rhodophyta). Algae are discoid or subspherical and grow to a maximum diameter of 400 μm. Attachment is via isolated elongate rhizoids that penetrate into the loosely filamentous structure of the host or by a pad of several coalesced rhizoids where the host has a more cohesive cortex. Elongate surface hairs are common. Gametophytes are dioecious, the spermatangia arising on surface cells, and carpogonia with elongate trichogynes borne directly on undifferentiated surface supporting cells. Large sporangia form on stalk cells across the upper surface of the plants, these appearing to be either monosporangial or the result of fertilization of the carpogonia and equivalent to undivided zygotosporangia. Carposporophytes and tetrasporangia are unknown. 18S rRNA gene sequence analyses indicate that Pihiella constitutes a clade of long branch length most closely related to the Ahnfeltiales. The unique morphology and reproduction of Pihiella , combined with a substantial genetic divergence from the Ahnfeltiales, suggest that it is sufficiently distinct to warrant placement in a new family and order. We therefore describe the family Pihiellaceae and the order Pihiellales to accommodate the new genus.  相似文献   

3.
The newly described toxic dinoflagellate Pfiesteria piscicida is a polymorphic and multiphasic species with flagellated, amoeboid, and cyst stages. The species is structurally a heterotroph; however, the flagellated stages can have cleptochloroplasts in large food vacuoles and can temporarily function as mixotrophs. The flagellated stage has a typical mesokaryotic nucleus, and the theca is composed of four membranes, two of which are vesicular and contain thin plates arranged in a Kofoidian series of Po, cp, X, 4′, 1a, 5″, 6c, 4s, 5″′, and 2″″. The plate tabulation is unlike that of any other armored dinoflagellate. Nodules often demark the suture lines underneath the outer membrane, but fixation protocols can influence the detection of plates. Amoeboid benthic stages can be filose to lobose, are thecate, and have a reticulate or spiculate appearance. Amoeboid stages have a eukaryotic nuclear profile and are phagocytic. Cyst stages include a small spherical stage with a honeycomb, reticulate surface and possibly another stage that is elongate and oval to spherical with chrysophyte-like scales that can have long bracts. The species is placed in a new family, Pfiesteriaceae, and the order Dinamoebales is emended.  相似文献   

4.
The tiny jumping flagellate originally described as Pedinomonas mikron Throndsen was isolated into pure culture from Australian waters and its ultrastructure critically examined. Pedinomonas mikron differs in behavior and in features of the flagellar apparatus from P. minor, the type species from freshwater, and is referred to the new genus Resultor. The two genera are closely related and form the new class Pedinophyceae, which is characterized by features of the flagellar apparatus, mitosis, and cytokinesis. The flagella show the 11/5 orientation otherwise characteristic of Ulvophyceae and Pleurastrophyceae, but they are arranged end to end as in the Chlorophyceae. The flagellar root system is asymmetric and includes a rhizoplast that emerges from the base of one flagellum but subsequently associates with a microtubular root from the second basal body. Mitosis studied previously by Pickett-Heaps and Ott in Pedinomonas is closed, unlike in other green algae, and the spindle is persistent. No phycoplast or phragmoplast is formed during cytokinesis. The eyespot of the Pedinophyceae is located at the opposite end of the cell from the flagella and adjacent to the pyrenoid, as in the most primitive members of the Prasinophyceae. Members of the Pedinophyceae lack prasinoxanthin and Mg 2,4D, characteristic of certain other primitive green algae. The primitive green algae include the classes Prasinophyceae and Pedinophyceae. Micromonadophyceae Mattox et Stewart is considered a synonym of Prasinophyceae. Two new orders are established, Pedinomonadales, containing all known members of the Pedinophyceae, and Scourfieldiales, with the single family Scourfieldiaceae fam. nov. and the single genus Scourfieldia.  相似文献   

5.
Chrysolepidomonas gen. nov. is described for single-celled monads with two flagella, a single chloroplast, and distinctive canistrate and dendritic scales. The type species, Chrysolepidomonas dendrolepidota sp. nov., is described for the first time. The canistrate scales bear eight “bumps” on the top surface, and the dendriticscales have a tapered base with a quatrifid tip. These organic scales are formed in the Golgi apparatus and storred in a scale reservoir. The scale reservoir is bounded on two sides by the R1 and R2 in microtubular roots of the basal apparatus. The cyst (=stomatocyst, statospore) forms endogenously by means of a silica deposition vesicle. The outer cyst surface is smooth, and the pore region is unornamented. Two other organisms bearing canistrate and dendritic scales, previously assigned to the genus Sphaleromants, are transferred to the genus Chrysolepidomonas. They are C.angalica sp. nov. and C. marine(Pienaar) comb. nov. The distinguishing features of Chrysolepidomonas and Sphaleromantis are discussed. A new family, Chrysolepidomonadceae fam. noc., is described for flagellates covered with organic scales.  相似文献   

6.
The life cycle of a previously undescribed chrysophyte, assigned to the new genus Rhizoochromonas, is described. It includes a small motile stage with heterokont flagellation which invades a Dinobryon lorica. Reproduction by cell division of the nearly spherical rhizopodial vegetative stage frequently leads to expulsion of the host protoplast through overcrowding of the lorica. Endogenous cysts (stomatocysts) are also formed within the Dinobryon lorica. The new family, Brehmiellaceae, is established to accommodate pseudopodial/rhizopodial chrysophytes with heterokont flagellation in the motile stage. Rhizoochromonas endoloricata gen. et sp. nov. has been found at two widely separated softwater locations in Ontario, and at one it constituted a major component of the planktonic flora during the autumns of six successive years.  相似文献   

7.
Observations of a marked cessation of feeding in filter feeding animals maintained in flowing Narragansett Bay seawater in June 1985 drew our attention to a bloom of a golden alga 2 μm in diameter at unprecedented populations of 109 cells. L?1. This picoplankter lacked morphological features useful in discriminating it from other similar sized forms with either phase contrast or epifluorescence light microscopy. Natural populations of picoplankton, obtained from the height of the bloom until its decline, were examined in thin section with transmission electron microscopy. A cell with a single chloroplast, nucleus, and mitochondrion and an unusual exocellular polysaccharide-like layer was apparently the bloom alga. The ultrastructure of this alga is consistent with that of the Chrysophyceae, and a new genus and species, Aureococcus anophagefferens is described. Attempts to grow this previously unrecognized picoplanktonic alga as an obligate phototroph failed and only yielded cultures of other previously described picoalgae. Facultative and obligate phagotrophic protists with ingested cells of Aureococcus were only observed as the bloom waned and minute diatoms became common. Cells of A. anophagefferens with virus particles typical for picoalgae occurred throughout the bloom. Populations of the usually dominant photosynthetic picoplankter, the cyanobacterium Synechococcus Nägeli, were depressed during the bloom. This could be due in part to selective grazing on Synechococcus rather than Aureococcus by elevated populations of Calycomonas ovalis Wulff which accompanied the algal bloom.  相似文献   

8.
Representatives of the freshwater red algal family Thoreaceae were studied to resolve their taxonomic and phylogenetic status. Three specimens of Nemalionopsis and five collections of Thorea were examined for pit plug ultrastructure and analyzed for the sequences of the genes coding for the large subunit of RUBISCO (rbcL) and the small subunit of rRNA (18S rRNA). The phylogenetic trees generated from the two genes, and a combined tree all showed the Thoreaceae to be contained in a well‐supported monophyletic clade that is separate from the other two families currently classified in the Batrachospermales, the Batrachospermaceae and the Lemaneaceae. In addition, secondary structure elements of the 18S rRNA gene were observed at positions 650 and 1145 (Escherichia coli numbering system) that are not present in other members of the Rhodophyta. The pit plugs of the gametophytic and chantransia stages of the Thoreaceae contain two cap layers, the outer one of which is typically plate‐like, though occasionally inflated ones have been seen. No pit plug cap membrane has been observed. These findings indicate the Thoreaceae has been misclassified in the Batrachospermales and should be placed in its own order, the Thoreales. This order is characterized by having freshwater representatives with multiaxial gametophytes, a uniaxial chantransia stage, and pit plugs with two cap layers, the outer one of which is usually plate‐like.  相似文献   

9.
The new genus Pycnococcus Guillard is based on several clones from the western North Atlantic and Gulf of Mexico. The type and only described species, Pycnococcus provasolii Guillard, sp. nov., is typified by clone Ω48-23 from the North Atlantic. Cells of Pycnococcus provasolii are solitary, spherical, 1.5–4.0 μm in diameter, have a resistant cell wall lacking sporopollenin, and have the ultrastructural characteristics of green algae. With the light microscope they are scarcely distinguishable from cells of other coccoid planktonic organisms. In pigmentation P. provasolii resembles Micromonas pusilla, Mantoniella squamata, and Mamiella gilva in having chl a, much chl b, Mg 2,4-divinylphaeoporphyrin a5 monomethyl ester (presumably), and prasinoxanthin as a major xanthophyll. The pyrenoid of P. provasolii has a cytoplasmic channel, which is unique among species closely related to it. Flagellates, occurring rarely in culture, are similar to but distinguishable from known Pedinomonas species by size and shape. Pycnococcus provasolii is referred to the new family Pycnococcaceae Guillard, in the order Mamiellales of the class Micromonadophyceae (Chlorophyta). Clones of Pycnococcus provasolii are oceanic in nutritional characteristics, require only vitamin B12 in culture, and are well adapted to growth under blue or blue-violet light of low intensity.  相似文献   

10.
We investigate an organism that closely resembles the nonphotosynthetic dinoflagellate “Gymnodinium elongatum” Hope 1954 using EM and molecular methods. Cells are 20–35 μm long, 10 μm wide, biconical, transparent, and have a faint broad girdle. Thecal plates are thin but present (plate formula Po Pi CP 3′ 1–2A 5″ 3C 6S 4? 3″″). With the exception of one feature, the presence of three antapical plates, the amphiesmal arrangement of this species is consistent with that of the order Peridiniales, family Podolampaceae; it is not at all consistent with the characteristics of the genus Gymnodinium. On the basis of these ultrastructural findings, we establish a new genus, Lessardia, and a new species, Lessardia elongata Saldarriaga et Taylor. Molecular phylogenetic analyses were performed using the small subunit rRNA genes of L. elongata as well as Roscoffia capitata, a member of a genus of uncertain systematic position that has been postulated to be related to the Podolampaceae. These analyses place Lessardia and Roscoffia as sister lineages within the so‐called GPP complex. Thecal plate arrangements led us to expand the family Podolampaceae to include the genus Lessardia and, in combination with new molecular results, to propose a close relationship between the Podolampaceae and Roscoffia. Within this lineage, Lessardia and Roscoffia appear to have retained a number of ancestral characters: Roscoffia still has a well‐developed cingulum, a feature absent in all members of the Podolampaceae, and Lessardia has more than one antapical plate, a character reminiscent of some members of the family Protoperidiniaceae.  相似文献   

11.
A new genus and species of heterotrophic dinoflagellate, Cryptoperidiniopsis brodyi gen. et sp. nov., are described. This new species commonly occurs in estuaries from Florida to Maryland, and is often associated with Pfiesteria piscicida Steidinger et Burkholder, Pseudopfiesteria shumwayae (Glasgow et Burkholder) Litaker et al., and Karlodinium veneficum (Ballantine) J. Larsen, as well as other small (<20 μm) heterotrophic and mixotrophic dinoflagellates. C. brodyi gen. et sp. nov. feeds myzocytotically on pigmented microalgae and other microorganisms. The genus and species have the enhanced Kofoidian plate formula of Po, cp, X, 5′, 0a, 6″, 6c, PC, 5+s, 5″′, 0p, and 2″″ and are assigned to the order Peridiniales and the family Pfiesteriaceae. Because the Pfiesteriaceae comprise small species and are difficult to differentiate by light microscopy, C. brodyi gen. et sp. nov. can be easily misidentified.  相似文献   

12.
The development of two red algal parasites was examined in laboratory culture. The red algal parasite Bostrychiocolax australis gen. et sp. nov., from Australia, originally misidentified as Dawsoniocolax bostrychiae (Joly et Yamaguishi-Tomita) Joly et Yamaguishi-Tomita, completes its life history in 6 weeks on its host Bostrychia radicans (Montagne) Montagne. Initially the spores divide to form a small lenticular cell, and then a germ tube grows from the opposite pole. Upon contact with the host cuticle, the germ tube penetrates the host cell wall. The tip of the germ tube expands, and the spore cytoplasm moves into this expanded tip. The expanded germ tube tip becomes the first endophytic cell from which a parasite cell is cut off that fuses with a host tier cell. The nuclei of this infected host cell enlarge. As parasite development continues, other host-parasite cell fusions are formed, transferring more parasite nuclei into host cells. The erumpent colorless multicellular parasite develops externally on the host, and reproductive structures are visible within 2 weeks. Tetrasporangia are superficial and cruciately or tetra-hedrally divided. Spermatia are formed in clusters. The carpogonial branches are four-celled, and the carpogonium fuses directly with the auxiliary (support) cell. The mature carposporophyte has a large central fusion cell and sympodially branched gonimoblast filaments. Early stages of development differ markedly in Dawsoniocolax bostrychiae from Brazil. Upon contact with the host, the spore undergoes a nearly equal division, and a germ tube elongates from the more basal of the two spore cells, penetrates the host cell wall, and fuses with a host tier cell. Subsequent development involves enlargement of the original spore body and division to form a multicellular cushion, from which descending rhizoidal filaments form that fuse with underlying host cells. This radically different development is in marked contrast to the final reproductive morphology, which is similar to B. australis and has lead to taxonomic confusion between these two entities. The different spore germination patterns and early germ-ling development of B. australis and D. bostrychiae warrant the formation of a new genus for the Australian parasite.  相似文献   

13.
A new foliose red alga, common subtidally from British Columbia to the Aleutian Islands, is described and given the name Hommersandia maximicarpa. The lobed perennial thallus, which can reach a height of 23 cm, is distinguished by its vegetative structure and by its unique pattern of nonprocarpic carposporophyte development. In transverse section, the blades consist of a narrow filamentous medullary layer sandwiched on either side by large ellipsoidal subcortical cells and a thin outer cortex. The monocarpogonial branch and auxiliary cell systems of the female plants are typical of many members of the Kallymeniaceae. However, after the carpogonialfusion cell forms, a distinctive developmental pattern begins. The connecting filaments radiate outward into the surrounding tissue, branch abundantly, and become septate. They then contact, in addition to auxiliary cells, many small moniliform accessory branches. These branches appear to act as initiation points for the gonimoblast filaments. The large diffuse carposporophytes produced are unknown in any other member of the Cryptonemiales. The vegetative and reproductive anatomy of Hommersandia is compared to other Kallymeniaceae, and similar patterns of postfertilization development are examined in the Rhodophyta.  相似文献   

14.
Four benthic algae are reported here for the first time in the North Carolina flora. The new brown algal genus and species, Onslowia endophytica Searles, is described as an endophyte of Halymenia floridana from the North Carolina continental shelf. New records of Boodleopsis pusilla and Naccaria corymbosa from North Carolina constitute range extensions of these tropical species on the American coast north from Florida. Blastophysa rhizopus, an endophyte and epiphyte known from the North Atlantic coast of Europe and America as well as the Caribbean is reported from North Carolina for the first time and in a new host, Predaea feldmannii.  相似文献   

15.
A new thecate, phototrophic, marine, sand‐dwelling dinoflagellate, Thecadinium mucosum Hoppenrath et Taylor sp. nov., is described from a culture isolated from Boundary Bay, British Columbia, Canada. It was illustrated with LM as well as SEM and TEM, and its position in the phylogenetic tree of dinoflagellates was investigated using molecular methods. Cells are asymmetrical, oval, laterally flattened, and strongly pigmented, with the plate formula P 3′ 1a 6′′ 7/8c 5 s 6′′′ 2′′′′. Thecal plates are smooth with scattered pores, and there is a distinctive anterior intercalary plate that could be involved in mucus secretion. Thecadinium inclinatum Balech (=Sabulodinium inclinatum (Balech) Saunders et Dodge), a thecate, marine, sand‐dwelling species that has been previously confused with what we now call T. mucosum, was also examined and illustrated through LM and SEM. New information on T. inclinatum is provided, including its plate formula P 3′ 6′′ 7c ?s 5′′′ 1p 1′′′′; we consider T. inclinatum to be related to most other Thecadinium species and not to Sabulodinium. Molecular phylogenetic analyses based on the small subunit ribosomal gene of T. mucosum, T. kofoidii (the type species of the genus), and T. dragescoi weakly support earlier suspicions based on morphology that T. dragescoi is not a member of Thecadinium. Tabulational patterns of the species suggest a relationship to the genus Amphidiniopsis.  相似文献   

16.
Sequence data from the nuclear small-subunit ribosomal RNA gene was obtained for nine strains of Bracteacoccus Tereg, representing at least five morphological species and four distinct geographic locations. These, along with sequence data from two additional chlorophycean taxa, Spongiochloris spongiosa Starr and Ascochloris multinucleata Bold et MacEntee, and 48 published sequences from green algal taxa, were used to determine the phylogenetic placement of Bracteacoccus with respect to other chlorophycean green algae. Results support the monophyly of Bracteacoccus strains, contrasting with patterns observed so far for many other coccoid green algae. The range of variation among Bracteacoccus strains is similar to that of other congeners. Basal body orientation in Bracteacoccus has been interpreted as clockwise; however, the 18S data point to a relationship between Bracteacoccus and taxa with the directly opposed configuration of the flagellar apparatus. No close relationship was found to the multinucleated green coccoids with clockwise orientation of basal bodies, such as Spongiochloris, or to those with parallel basal bodies, such as Spermatozopsis. However, 18S data confirm that the motile and vegetative cells of Bracteacoccus are structurally distinct from the representatives of sphaeroplealean families currently studied. It is premature to reclassify Bracteacoccus until 18S comparisons can be made with additional sphaeroplealean taxa and with algae with similar flagellar structure such as Dictyochloris and Heterochlamydomonas.  相似文献   

17.
Complete nuclear-encoded small-subunit ribosomal RNA (18S rRNA) coding sequences were determined for the coccoid green algae Dictyochloropsis reticulata (Tschermak-Woess) Tschermak-Woess , Myrmecia astigmatica Vinatzer, and M. bisecta Reisigl, to investigate the taxonomic position of Dictyochloropsis Geitler and of the genus Myrmecia Printz. Phylogenies inferred from these data revealed a sister-group relationship between D. reticulata and certain coccoid green algae that lack motile stages (autosporic coccoids) within the order Microthamniales. The monophyletic origin of the Microthamniales, including autosporic coccoids previously classified in the Chlorophyceae, is clearly resolved by the rRNA sequence data. This finding. shows the considerable taxonomic breadth of that order, whose taxonomic position has been unclear so far. A new class, Trebouxiophyceae, is proposed for this group of green algae. Phylogenetic inferences from the rRNA sequences show paraphyly of the genus Myrmecia. The 18S rRNA sequence data suggest that, among taxa that share similar vegetative cell morphologies, the zoospore characters resolve better the actual genus and species boundaries. Within identical zoospore types, the rRNA data allow further resolution of taxonomic relationships. On the basis of the.se findings, I propose that the genus Friedmannia Chantanachat ± Bold be merged into Myrmecia and that only those species be left in the genus Myrmecia that are identical in particular zoospore characters (i.e. those described in detail for M. israeliensis ( Chantanachat ± Bold) comb, nov.), namely M. astigmatica, M. biatorellae (Tschermak-Woess ± Ptesst) Petersen, and M. israeliensis. Myrmecia bisecta has to be excluded from Myrmecia; its taxonomic position within the Trebouxiophyceae is unclear .  相似文献   

18.
Few species in the genus Grateloupia have been investigated in detail with respect to the development of the auxiliary cell ampullae before or after diploidization. In this study, we document the vegetative and reproductive structures of two new species of Grateloupia, G. taiwanensis S.‐M. Lin et H.‐Y. Liang sp. nov. and G. orientalis S.‐M. Lin et H.‐Y. Liang sp. nov., plus a third species, G. ramosissima Okamura, from Taiwan. Two distinct patterns are reported for the development of the auxiliary cell ampullae: (1) ampullae consisting of three orders of unbranched filaments that branch after diploidization of the auxiliary cell and form a pericarp together with the surrounding secondary medullary filaments (G. taiwanensis type), and (2) ampullae composed of only two orders of unbranched filaments in which only a few cells are incorporated into a basal fusion cell after diploization of the auxiliary cell and the pericarp consists almost entirely of secondary medullary filaments (G. orientalis type). G. orientalis is positioned in a large clade based on rbcL gene sequence analysis that includes the type species of Grateloupia C. Agardh 1822 , Gfilicina. G. taiwanensis clusters with a clade that includes the generitype of Phyllymenia J. Agardh 1848 , Ph. belangeri from South Africa; that of Prionitis J. Agardh 1851 , Prlanceolata from Pacific North America; and that of Pachymeniopsis Y. Yamada ex Kawab. 1954, Palanceolata from Japan. A reexamination of the type species of the genera Grateloupia, Phyllymenia, Prionitis, and Pachymeniopsis is required to clarify the generic and interspecific relationships among the species presently placed in Grateloupia.  相似文献   

19.
Species discrimination within the gigartinalean red algal genus Hypnea has been controversial. To help resolve the controversy and explore phylogeny within the genus, we determined rbcL sequences from 30 specimens of 23 species within the genus, cox1 from 22 specimens of 10 species, and psaA from 16 species. We describe H. caespitosa as a new species characterized by a relatively slender main axis; a pulvinate growth habit with entangled, anastomosing, and subulate uppermost branches; and unilaterally borne tetrasporangial sori. The new species occurs in the warm waters of Malaysia, the Philippines, and Singapore. The phylogenetic trees of rbcL, psaA, and cox1 sequences showed a distant relationship of H. caespitosa to H. pannosa J. Agardh from Baja California and the marked differentiation from other similar species. The rbcL + psaA tree supported monophyly of the genus with high bootstrap values and posterior probabilities. The analysis revealed three clades within the genus, corresponding to three sections, namely, Virgatae, Spinuligerae, and Pulvinatae first recognized by J. G. Agardh. Exceptions were H. japonica T. Tanaka in Pulvinatae and H. spinella (C. Agardh) Kütz. in Spinuligerae.  相似文献   

20.
Sequences of 18S rRNA genes were obtained from eight species of Prorocentrum Ehrenberg: P. minimum (Pavillard) Schiller, P. mexicanum Osorio Tafall, P. emarginatum Fukuyo, P. lima (Ehrenberg) Dodge, P. arenarium Faust, P. maculosum Faust, P. concavum Fukuyo, and P. panamensis, sp. nov. Prorocentrum panamensis is a new species of tropical dinoflagellate isolated from a benthic coral reef on the Pacific coast of Panama and described here using scanning electron microscopy. Cells are heart shaped, 46–52 μm long and 43–46 μm wide. The valve surfaces are areolate except in the central area. Pores of 0.15 μm in diameter are scattered in areolae, mainly around the periphery of the cell. The right valve has a specific ovoid depression with numerous appressed pores; we named this structure the sieve-like depression. The periflagellar area is nearly ovoid, located in a shallow depression, and almost equally set into both valves. It is unornamented (no apical expansion) but has numerous depressions in platelets. The flagellar and auxiliary pores are different in size and shape. The intercalary band is transversally striated. Phylogenetic relationships of gonyaulacoid, peridinioid, gymnodinioid, and prorocentroid dinoflagellates were inferred from complete 18S rDNA sequences. Two distinct phylogenetic analyses are presented for armored and unarmored Dinophyceae in an attempt to make the phylogenetic relationships between these different kinds of organisms clearer. The Prorocentrales appear to have a common origin, although two groups of Prorocentrum spp. are apparent. The first group includes benthic, symmetrical species (P. lima, P. arenarium, P. maculosum, and P. concavum). The second group contains planktonic and bentho-planktonic species (P. micans Ehrenberg, P. minimum, P. mexicanum, and P. panamensis sp. nov.). Genetic distances between species within these two groups were high; however, the divergence between the two groups seems to have occurred late in dinoflagellate evolution. In addition, the bentho-planktonic P. emarginatum appeared distantly related to both groups; however,its 18S rDNA sequence shares specific nucleotide substitutions with the two groups, suggesting an older origin of this species compared to the others. A morphological interpretation of this phylogenetic analysis is made on the basis of the specific structure of the periflagellar area. Finally, genetic data and morphological observations support the hypothesis that the genus Prorocentrum is rather heterogeneous; several species could be considered to constitute distinct genera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号