首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The central role of Ca2+ signalling in plants is now well established. Much of our recent research has been based on the premise that the direct demonstration of signal-response coupling via Ca2+ requires the imaging or measurement of cytosolic free Ca2+ in living cells. Methods (confocal microscopy, fluorescence ratio imaging and photon counting imaging) which we use for imaging Ca2+ with fluorescent dyes or recombinant aequorin, are described. Approaches for using dyes are now routine for many plant cells. However, the imaging Ca2+ in whole tissues of plants genetically transformed with the aequorin gene is a very new development. We predict that this method, first employed in our laboratory, will bring about a revolution in our understanding of Ca2+ signalling at the multicellular level.  相似文献   

2.
Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells   总被引:2,自引:0,他引:2  
Polyphosphoinositides represent a minor group of phospholipids, accounting for less than 1% of the total. Despite their low abundance, these molecules have been implicated in various signalling and membrane trafficking events. Phosphatidylinositol 4-phosphate (PtdIns4 P ) is the most abundant polyphosphoinositide. 32Pi-labelling studies have shown that the turnover of PtdIns4 P is rapid, but little is known about where in the cell or plant this occurs. Here, we describe the use of a lipid biosensor that monitors PtdIns4 P dynamics in living plant cells. The biosensor consists of a fusion between a fluorescent protein and a lipid-binding domain that specifically binds PtdIns4 P , i.e. the pleckstrin homology domain of the human protein phosphatidylinositol-4-phosphate adaptor protein-1 (FAPP1). YFP–PHFAPP1 was expressed in four plant systems: transiently in cowpea protoplasts, and stably in tobacco BY-2 cells, Medicago truncatula roots and Arabidopsis thaliana seedlings. All systems allowed YFP–PHFAPP1 expression without detrimental effects. Two distinct fluorescence patterns were observed: labelling of motile punctate structures and the plasma membrane. Co-expression studies with organelle markers revealed strong co-labelling with the Golgi marker STtmd–CFP, but not with the endocytic/pre-vacuolar marker GFP–AtRABF2b. Co-expression with the Ptdins3 P biosensor YFP–2 × FYVE revealed totally different localization patterns. During cell division, YFP–PHFAPP1 showed strong labelling of the cell plate, but PtdIns3 P was completely absent from the newly formed cell membrane. In root hairs of M. truncatula and A. thaliana , a clear PtdIns4 P gradient was apparent in the plasma membrane, with the highest concentration in the tip. This only occurred in growing root hairs, indicating a role for PtdIns4 P in tip growth.  相似文献   

3.
To investigate PtdIns3P localization and function in plants, a fluorescent PtdIns3P-specific biosensor (YFP-2xFYVE) was created. On lipid dot blots it bound specifically and with high affinity to PtdIns3P. Transient expression in cowpea protoplasts labelled vacuolar membranes and highly motile structures undergoing fusion and fission. Stable expression in tobacco BY-2 cells labelled similar motile structures, but labelled vacuolar membranes hardly at all. YFP-2xFYVE fluorescence strongly co-localized with the pre-vacuolar marker AtRABF2b, partially co-localized with the endosomal tracer FM4-64, but showed no overlap with the Golgi marker STtmd-CFP. Treatment of cells with wortmannin, a PI3 kinase inhibitor, caused the YFP-2xFYVE fluorescence to redistribute into the cytosol and nucleus within 15 min. BY-2 cells expressing YFP-2xFYVE contained twice as much PtdIns3P as YFP-transformed cells, but this had no effect on cell-growth or stress-induced phospholipid signalling responses. Upon treatment with wortmannin, PtdIns3P levels were reduced by approximately 40% within 15 min in both cell lines. Stable expression of YFP-2xFYVE in Arabidopsis plants labelled different subcellular structures in root compared with shoot tissues. In addition labelling the motile structures common to all cells, YFP-2xFYVE strongly labelled the vacuolar membrane in leaf epidermal and guard cells, suggesting that cell differentiation alters the distribution of PtdIns3P. In dividing BY-2 cells, YFP-2xFYVE-labelled vesicles surrounded the newly formed cell plate, suggesting a role for PtdIns3P in cytokinesis. Together, these data show that YFP-2xFYVE may be used as a biosensor to specifically visualize PtdIns3P in living plant cells.  相似文献   

4.
Volokh KY 《Biorheology》2003,40(1-3):213-220
Conventional continuum mechanics models considering living cells as viscous fluid balloons are unable to explain some recent experimental observations. In contrast, new microstructural models provide the desirable explanations. These models emphasize the role of the cell cytoskeleton built of struts-microtubules and cables-microfilaments. A specific architectural model of the cytoskeletal framework called "tensegrity" deserved wide attention recently. Tensegrity models particularly account for the phenomenon of linear stiffening of living cells. These models are discussed from the structural mechanics perspective. Classification of structural assemblies is given and the meaning of "tensegrity" is pinpointed. Possible sources of non-linearity leading to cell stiffening are emphasized. The role of local buckling of microtubules and overall stability of the cytoskeleton is stressed. Computational studies play a central role in the development of the microstructural theoretical framework allowing for the prediction of the cell behavior from "first principles". Algorithms of computer analysis of the cytoskeleton that consider unilateral response of microfilaments and deep postbuckling of microtubules are addressed.  相似文献   

5.
Protein dynamics in living cells   总被引:1,自引:0,他引:1  
Bryant JE  Lecomte JT  Lee AL  Young GB  Pielak GJ 《Biochemistry》2005,44(26):9275-9279
A protein's structure is most often used to explain its function, but function also depends on dynamics. To date, protein dynamics have been studied only in vitro under dilute solution conditions where solute concentrations are typically less than 10 g/L, yet proteins function in a crowded environment where the solute concentration can exceed 400 g/L. Does the intracellular environment affect protein dynamics? The answer will help in assessing the biological significance of the NMR-derived dynamics data collected to date. We investigated fast protein dynamics inside living Escherichia coli by using in-cell NMR. The backbone dynamics of apocytochrome b5 were quantified using {1H}-15N nuclear Overhauser effect (nOe) measurements, which characterize motions on the pico- to nanosecond time scale. The overall trend of backbone dynamics remains the same in cells. Some of the nOe values differ, but most of the differences track the increased intracellular viscosity rather than a change in dynamics. Therefore, it appears that dilute solution steady-state {1H}-15N nOe measurements provide biologically relevant information about pico- to nanosecond backbone motion in proteins.  相似文献   

6.
7.
Since the advent of the green fluorescent protein, the subcellular localization, mobility, transport routes and binding interactions of proteins can be studied in living cells. Live cell imaging, in combination with photobleaching, energy transfer or fluorescence correlation spectroscopy are providing unprecedented insights into the movement of proteins and their interactions with cellular components. Remarkably, these powerful techniques are accessible to non-specialists using commercially available microscope systems.  相似文献   

8.
Micropatterning approaches using self-assembled monolayers of alkyl thiols on gold are not optimal for important imaging modalities in cell biology because of absorption of light and scattering of electrons by the gold layer. We report here an anisotropic solid microetching (ASOMIC) procedure that overcomes these limitations. The method allows molecular dynamics imaging by wide-field and total internal reflection fluorescence (TIRF) microscopy of living mammalian cells and correlative platinum replica electron microscopy.  相似文献   

9.
The development and application of single cell optical imaging has identified dynamic and oscillatory signalling processes in individual cells. This requires single cell analyses since the processes may otherwise be masked by the population average. These oscillations range in timing from seconds/minutes (e.g. calcium) to minutes/hours (e.g. NF-kappaB, Notch/Wnt and p53) and hours/days (e.g. circadian clock and cell cycle). Quantitative live cell measurement of the protein processes underlying these complex networks will allow characterisation of the core mechanisms that drive these signalling pathways and control cell function. Ultimately, such studies can be applied to develop predictive models of whole tissues and organisms.  相似文献   

10.
Cytoskeletal dynamics and nerve growth   总被引:65,自引:0,他引:65  
T Mitchison  M Kirschner 《Neuron》1988,1(9):761-772
  相似文献   

11.
Here we visualize new aspects of the dynamics of endocytotic clathrin-coated pits and vesicles in mammalian cells by using a fusion protein consisting of green fluorescent protein and clathrin light chain a. Clathrin-coated pits invaginating from the plasma membrane show definite, but highly limited, mobility within the membrane that is relaxed upon treatment with latrunculin B, an inhibitor of actin assembly, indicating that an actin-based framework may be involved in the mobility of these pits. Transient, motile coated vesicles that originate from coated pits can be detected, with multiple vesicles occasionally appearing to emanate from a single pit. Despite their seemingly random distribution, coated pits tend to form repeatedly at defined sites while excluding other regions. This spatial regulation of coated-pit assembly and function is attributable to the attachment of the coated pits to the membrane skeleton.  相似文献   

12.
13.
Live cell imaging is a powerful tool for understanding the function and regulation of membrane proteins. In this review, we briefly discuss 4 fluorescence-microscopy-based techniques for studying the transport dynamics of membrane proteins: fluorescence-correlation spectroscopy, image-correlation spectroscopy, fluorescence recovery after photobleaching, and single-particle and (or) molecule tracking. The advantages and limitations of each approach are illustrated using recent studies of an ion channel and cell adhesion molecules.  相似文献   

14.
Histone dynamics in living cells revealed by photobleaching   总被引:5,自引:0,他引:5  
Kimura H 《DNA Repair》2005,4(8):939-950
  相似文献   

15.
Chen T  Wang X  von Wangenheim D  Zheng M  Šamaj J  Ji W  Lin J 《Protoplasma》2012,249(Z2):S157-S167
Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.  相似文献   

16.
Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.  相似文献   

17.
Calcium dynamics in the peroxisomal lumen of living cells   总被引:2,自引:0,他引:2  
We here describe the generation of novel, green fluorescent protein-based Ca(2+) indicators targeted to the peroxisome lumen. We show that (i) the Ca(2+) concentration of peroxisomes in living cells at rest is similar to that of the cytosol; (ii) increases in cytosolic Ca(2+) concentration (elicited by either Ca(2+) mobilization from stores or Ca(2+) influx through plasma membrane Ca(2+) channels) are followed by a slow rise in intraperoxisomal [Ca(2+)]; (iii) Ca(2+) influx into peroxisomes is driven neither by an ATP-dependent pump nor by membrane potential nor by a H(+)(Na(+)) gradient. The peroxisomal membrane appears to play a low pass filter role, preventing the organelle from taking up shortlasting cytosolic Ca(2+) transients but allowing equilibration of the peroxisomal luminal [Ca(2+)] with that of the cytosol during prolonged Ca(2+) increases. Thus, peroxisomes appear to be an additional cytosolic Ca(2+) buffer, but their influx and efflux mechanisms are unlike those of any other cellular organelle.  相似文献   

18.
Chromosome territories formed by fluorescence-labeled sub-chromosomal foci were analyzed in time-lapse series of 3D confocal data sets of living HeLa and human neuroblastoma cells. The quantitative analysis of the chromosome territory morphology confirmed previous results obtained by visual observation [Zink et al., Hum. Genet. 102 (1998) 241–251] that chromosome territories persisted as stable entities over an observation time >4 h. The changes in morphology with time of single chromosome territories were found to be less pronounced than differences in morphology of different chromosome territories in fixed cells. The analysis of the individual motion of chromosome territories recently showed ‘Brownian’ diffusion-like motion at very slow rates [Bornfleth et al., Biophys. J. 77 (1999) 2871–2886]. Here, we show that the mutual motion of different chromosome territories was independent and also ‘Brownian’ diffusion-like.  相似文献   

19.
Summary The presence of a prophase nucleus inHaemanthus endosperm happens to trigger the break down of the nuclear envelope in any interphase nucleus, located in its close proximity. Besides, chromosomes in the interphase nucleus start condensing gradually for the initial breaking point which is the nearest point to the prophase. The observation suggest the diffusion of an inducer, whose progression has been recorded to occur at a rate of 1.1 m/min.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号