首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of hepatocyte growth factor/scatter factor (HGF/SF) may be one of the critical steps in organ regeneration, wound healing, and embryogenesis. We previously reported the production of HGF/SF from various human leukemia cell lines and a high level of the growth factor in blood and bone marrow plasma from patients with various types of leukemia. We determined here the effects of hematopoietic cytokines on HGF/SF production in human leukemia cell lines, KG-1, a myeloid cell line, and RPMI-8226, a B cell line. Interferon (IFN)-γ remarkably stimulated HGF/SF production in both cell lines at concentrations of more than 0.1 or 1 IU/ml. IFN-α and IFN-β were as effective as IFN-γ in RPMI-8226 cells, but less than IFN-γ in KG-1 cells. HGF/SF gene expression in KG-1 cells was also up-regulated by IFN-γ. Granulocyte colony-stimulating factor (G-CSF), granulocyte/macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-5 and IL-6 had no effect on HGF/SF production in the 2 leukemia cell lines. We also determined the effects of HGF/SF inducers known for human fibroblasts on the growth factor production in leukemia cells. Out of phorbol 12-myristate 13-acetate (PMA), cholera toxin, IL-1β, and tumor necrosis factor (TNF)-α, the former three were as effective as IFN-γ in KG-1 cells, but only TNF-α stimulated HGF/SF production in RPMI-8226 cells, whose effect was less than those of IFN-α, IFN-β, and IFN-γ. The effect of IFN-γ in KG-1 cells was synergistic with that of PMA. In contrast with the effect in leukemia cells, HGF/SF induction by IFN-γ in human skin fibroblasts was much less than that by PMA or cholera toxin. These results indicated that IFN-γ is a potent inducer of HGF/SF in human leukemia cells. This finding suggests the presence of a homeostatic control mechanism in liver regeneration and repair: hepatic injury, DNA synthesis inhibition, or apoptosis caused by IFN-γ is subsequently overcome by cytokine-induced HGF/SF, a potent promoter of liver DNA synthesis. J. Cell. Physiol. 174:107–114, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
《The Journal of cell biology》1995,129(5):1411-1419
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.  相似文献   

3.
4.
Hepatocyte growth factor/scatter factor (HGF/SF) is a heparan/dermatan sulfate-binding growth factor produced by stromal cells that acts as a paracrine effector on neighboring epithelia. HGF/SF stimulated DNA synthesis in human mammary (Huma) 109 myoepithelial-like cells grown on collagen I and fibronectin substrata but not when grown on plastic. Dual phosphorylation of mitogen-activated protein kinases (p42/44(MAPK)) was required for this stimulation of DNA synthesis. In Huma 109 cells cultured on plastic, HGF/SF stimulated a transient phosphorylation of p42/44(MAPK), which reached a maximum at 10 min after addition of the growth factor and returned to near basal levels after 20 min. In contrast, the phosphorylation of p42/44(MAPK) stimulated by HGF/SF in cells cultured on collagen I or fibronectin was sustained over 45 min. In Huma 109 cells deficient in sulfated glycosaminoglycans, HGF/SF failed to stimulate p42/44(MAPK) phosphorylation or DNA synthesis on any substratum, even when soluble heparan sulfate proteoglycans purified from the cells or from the culture medium were added. However, HGF/SF stimulated DNA synthesis and a sustained phosphorylation of p42/44(MAPK) in sulfated glycosaminoglycan-deficient Huma 109 cells plated on a substratum of medium HSPGs but not cell HSPGs. The HGF/SF-induced proliferation is thus highly dependent on heparan sulfate proteoglycans in myoepithelial-like cells.  相似文献   

5.
Acute irreparable UV-induced DNA damage leads to apoptosis of epidermal keratinocytes (KC) and the formation of sunburn cells, whereas less severely damaged cells survive but harbor the potential of tumor formation. Here we report that hepatocyte growth factor/scatter factor (HGF/SF) prevents UVB-induced apoptosis in primary KC cultured in vitro. When we analyzed the signaling pathways initiated by the HGF/SF receptor c-met, we found that the phosphatidylinositol (PI) 3-kinase and its downstream-element AKT and the mitogen-activated protein (MAP) kinase were activated. Inhibition of PI 3-kinase led to a complete abrogation of the anti-apoptotic effect of HGF/SF, whereas blockade of the MAP kinase pathway had no effect. In contrast to the observation with primary KC, HGF/SF could not enhance survival after UVB irradiation of HaCaT and A431 cell lines, despite the fact that in these cells the PI 3-kinase and MAP kinase pathways were also activated by HGF/SF. Cell cycle analysis of KC revealed a G(2)/M arrest after UVB irradiation and a complete loss of proliferating cells. Because HGF/SF in the skin is produced by dermal fibroblasts, our findings suggest that the HGF/SF-mediated rescue of KC from apoptosis represents an important paracrine loop by which UVB-damaged KC can be kept alive to maintain the epidermal barrier function but cannot further proliferate, thereby preventing the induction of epithelial skin tumors.  相似文献   

6.
HGF/SF and its receptor (Met) are principal mediators of mesenchymal-epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis-driven HF regression (catagen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild-type controls, transgenic mice overexpressing HGF/SF under the control of the MT-1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met-mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.-Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling.  相似文献   

7.
Hepatocyte growth factor/scatter factor (HGF/SF) acts via a dual receptor system consisting of the MET tyrosine kinase receptor and heparan sulfate or dermatan sulfate proteoglycans. In optical biosensor binding assays, competition by oligosaccharides for binding of HGF/SF to immobilized heparin showed that disaccharides failed to compete, whereas tetrasaccharides inhibited HGF/SF binding (IC(50) 8 microg/ml). The inhibitory potency of the oligosaccharides increased as their length increased by successive disaccharide units, to reach a maximum (IC(50) 1 microg/ml) at degree of polymerization (dp) 10. In binding assays, HGF/SF was found to bind directly to oligosaccharides as small as dp 4, and the binding parameters were similar for oligosaccharides of dp 4-14 (k(a) 2.2-45.3 x 10(6) m(-1) s(-1), k(d) 0.033-0.039 s(-1), and K(d) 9-16 nm). In human keratinocytes, HGF/SF stimulated DNA synthesis, and this was dependent on a sustained phosphorylation of p42/44(MAPK). In chlorate-treated and hence sulfated glycosaminoglycan-deficient HaCaT cells, the stimulation of DNA synthesis by HGF/SF was almost abolished. Heparin-derived oligosaccharides from dp 2 to dp 24 were added together with HGF/SF to chlorate-treated cells to determine the minimum size of oligosaccharides able to restore HGF/SF activity. At restricted concentrations of oligosaccharides (4 ng/ml), HGF/SF required decasaccharides, whereas at higher concentrations (100 ng/ml) even tetrasaccharides were able to partly restore DNA synthesis. The results suggest that HGF/SF binds to a tetrasaccharide and that although this is sufficient to enable the stimulation of DNA synthesis, longer oligosaccharides are more efficient, perhaps by virtue of their ability to bind more easily other molecules.  相似文献   

8.
Interferon (IFN)-gamma stimulates hepatocyte growth factor (HGF) production markedly in various human leukemia cell lines, but its positive effect in human skin fibroblasts is slight. We examined the combined effect of IFN-gamma and various HGF inducers on HGF production in human skin fibroblasts. IFN-gamma synergistically enhanced HGF production stimulated by 8-bromo-cAMP, one of the most effective inducers of HGF: HGF secreted from cells incubated with 1 mM of 8-bromo-cAMP, 1000 U/ml of IFN-gamma and both of these was approximately 8, 1.5 and 24 times, respectively, that secreted from untreated cells. The effect of IFN-gamma was dose-dependent and was nullified by an anti-IFN-gamma antibody. Neither IFN-alpha nor IFN-beta had such an enhancing effect, but both these IFNs inhibited the synergistic effect of IFN-gamma and 8-bromo-cAMP. IFN-gamma also synergistically augmented HGF production induced by interleukin-1beta and cAMP-increasing agents cholera toxin, forskolin and prostaglandin E(2). HGF gene expression upregulated by cholera toxin, forskolin and 8-bromo-cAMP was markedly enhanced by IFN-gamma, which was detected as early as 3 h after its addition. The synergy between HGF inducers and IFN-gamma is not common to all HGF inducers, because HGF production stimulated by epidermal growth factor and protein-kinase-C-activating phorbol esters was significantly inhibited by IFN-gamma. These results indicate that IFN-gamma synergistically stimulates cAMP-induced HGF production and inhibits HGF production induced by growth factors and protein kinase C activators in human skin fibroblasts.  相似文献   

9.
10.
Hepatocyte growth factor enhances MMP activity in human endothelial cells   总被引:8,自引:0,他引:8  
Scatter factor (SF) or hepatocyte growth factor (HGF) has been identified as an angiogenic factor. Angiogenesis requires not only tube formation but also invasion of pericytes and extracellular matrix (ECM) remodeling to promote new vessel stabilization. In the current study, the effect of SF/HGF on endothelial cell (EC) production of matrix metalloproteinases (MMPs) was explored. We showed that SF/HGF enhanced MT1-MMP synthesis and induced MMP-2 activation in two human EC lines: dermal microvessel EC and coronary arterial EC. Furthermore, SF/HGF accelerated EC invasion into matrix, an activity that could be inhibited by a MMP inhibitor. We also demonstrated that the MAP kinase cascade is critical in signal transduction pathway from SF/HGF stimulation to MT1-MMP up-regulation. The current study indicates that MMP activation is a novel effect of SF/HGF on ECs.  相似文献   

11.
Scatter Factor (SF) is a fibroblast-secreted protein which promotes motility and matrix invasion of epithelial cells. Hepatocyte Growth Factor (HGF) is a powerful mitogen for hepatocytes and other epithelial tissues. SF and HGF, purified according to their respective biological activities, were interchangeable and equally effective in assays for cell growth, motility and invasion. Both bound with identical affinities to the same sites in target cells. The receptor for SF and HGF was identified as the product of the MET oncogene by: (i) ligand binding and coprecipitation in immunocomplexes; (ii) chemical crosslinking to the Met beta subunit; (iii) transfer of binding activity in insect cells by a baculovirus carrying the MET cDNA; (iv) ligand-induced tyrosine phosphorylation of the Met beta subunit. SF and HGF cDNA clones from human fibroblasts, placenta and liver had virtually identical sequences. We conclude that the same molecule (SF/HGF) acts as a growth or motility factor through a single receptor in different target cells.  相似文献   

12.
Hepatocyte growth factor (HGF) is a potent mitogen for adult rat hepatocytes in primary culture. HGF stimulates growth and DNA synthesis of normal human epidermal melanocytes in culture. The maximal stimulation of DNA synthesis by 4.0-fold occurred with 10 ng/ml HGF. This stimulatory effect was additive with both acidic and basic fibroblast growth factors, while it was inhibited by transforming growth factor-beta 1. Melanocytes expressed a single class of specific, high-affinity receptors for HGF with a Kd of 22 pM and approximately 120 receptors/cell. Thus, HGF is a potent mitogen for normal human epidermal melanocytes.  相似文献   

13.
Effect of hepatocyte growth factor (HGF) on normal human epidermal keratinocytes cultured under conditions of low Ca2+ (0.1 mM, growth-promoting condition) and physiological Ca2+ (1.8 mM, differentiation-promoting condition) was investigated. In low Ca2+, HGF markedly enhanced the migration of keratinocytes while it suppressed cell growth and DNA synthesis in a dose-dependent manner. In contrast, HGF enhanced the migration, cell growth, and DNA synthesis of keratinocytes cultured under conditions of physiological Ca2+. The maximal stimulation of DNA synthesis (2.4-fold stimulation) in physiological Ca2+ was seen at 2.5-5 ng/ml HGF and the stimulatory effect of HGF was suppressed by transforming growth factor-beta 1. Analysis of the HGF receptor using 125I-HGF as a ligand showed that human keratinocytes expressed a single class of specific, saturable receptor for HGF in both low and physiological Ca2+ conditions, exhibiting a Kd = 17.3 pM and approximately 690 binding sites/cell under physiological Ca2+. Thus, HGF is a potent factor which enhances growth and migration of normal human keratinocytes under conditions of physiological Ca2+. HGF may play an important role in epidermal tissue repair as it enhances both the migration and growth of keratinocytes.  相似文献   

14.
The addition of exogenous hepatocyte growth factor (HGF)/scatter factor (SF) to MDCK epithelial cells results in fibroblastic morphology and cell motility. We generated HGF/SF producing MDCK cells by transfection with an expression plasmid containing human HGF/SF cDNA. Production of HGF/SF by these cells induced a change from an epithelial to a fibroblastic morphology and increased cell motility. In addition, the HGF/SF producing cells acquired efficient anchorage-independent growth in soft agar but did not form tumors in nude mice. The morphological change and the stimulation of the anchorage-independent growth were prevented by anti-HGF/SF antibody, suggesting that the factor is secreted and then exerts its effects through cell surface receptors.  相似文献   

15.
The presence of hepatocyte growth factor in the developing rat.   总被引:13,自引:0,他引:13  
Hepatocyte growth factor (HGF), a heparin-binding polypeptide mitogen, stimulates DNA synthesis in adult rat and human hepatocytes and in several other cells of epithelial origin. Recently, it was determined that scatter factor (SF), a protein that has been shown to cause the dispersion and migration of epithelial cells in culture, is identical to HGF. Moreover, the receptor for HGF was identified as the product of the proto-oncogene, c-MET, a tyrosine kinase-containing transmembrane protein. c-MET expression has been reported in a variety of adult and embryonic mouse tissues. Similarly, we and others have demonstrated that HGF is expressed in various adult rat and human tissues. In the present study, the tissue distribution of HGF during rat development was determined by immunohistochemistry using an HGF-specific polyclonal antiserum. Between day 12 and day 19, immunoreactivity for HGF was present in various locations such as hematopoietic cells, somites, squamous epithelium of the esophagus and skin, periventricular germinal matrix of the brain, bronchial epithelium, renal collecting tubules and chondrocytes. After day 19, HGF immunoreactivity was also present in the pancreas, submaxillary glands and neural tissues. In addition to immunolocalizing HGF in tissue sections, bioreactive and immunoreactive HGF was extracted and purified from rat fetuses. Other studies demonstrated the presence of HGF and c-MET mRNA in total fetal rat, and in fetal and neonatal rat liver. Addition of purified HGF to fetal and neonatal rat liver cultures enriched for hepatocytes stimulated DNA synthesis up to six-fold over controls. These findings strongly suggest a pivotal role for this potent regulator of growth and development.  相似文献   

16.
Membranes were prepared from the human epithelioid carcinoma cell line A-431 which has approx. 2 · 106 epidermal growth factor receptors per cell. This membrane preparation which retained a high epidermal growth factor binding specific activity was used as an antigen to produce antisera in rabbits. Double-immunodiffusion experiments demonstrated that the immune serum contained precipitating antibodies to several components of detergent solubilized A-431 membranes.The immonoglobulin G fraction of this immune sera inhibited 125I-labeled epidermal growth factor binding to receptors in: (1) intact human and mouse cells; (2) membrane preparations from A-431 cells and human placenta, and (3) solubilized A-431 membranes. Inhibition of 125I-labeled epidermal growth factor binding was observed with divalent and monovalent fragments of immunoglobulin G prepared from the immunoglobulin G fraction. Also, the immunoglobulin G fraction blocked growth factor binding to membranes at low temperature (5°C).Anti-A-431 antibody blocked the induction of DNA synthesis in quiescent fibroblasts by epidermal growth factor in a manner similar to that of anti-epidermal growth factor antibody. Addition of either anti-A-431 or anti-epidermal growth factor antibodies to fibroblasts at times up to 5 h after the addition of epidermal growth factor completely reversed the hormone's mitogenic potential. At later times (after 12 h) addition of either antibody was without effect on the stimulation of DNA synthesis by epidermal growth factor. Anti-A-431 antibody did not block the induction of DNA synthesis in fibroblasts by fibroblast growth factor or serum.  相似文献   

17.
Hepatocyte growth factor (HGF), which is a potent growth factor of adult rat hepatocytes in primary culture, also strongly stimulated DNA synthesis of rabbit renal tubular epithelial cells in secondary culture. Its mitogenic activity was dose-dependent, being detectable at 3 ng/ml and maximal at 30 ng/ml. Over 20% of the cells were shifted to the S-phase by HGF alone, judging by the labeling index. HGF had additive effects with EGF, acidic fibroblast growth factor (a-FGF), and insulin. Transforming growth factor-beta 1 (TGF-beta 1) strongly inhibited DNA synthesis of renal tubular cells stimulated by HGF. The growth of renal tubular epithelial cells was also regulated by cell density: DNA synthesis stimulated by HGF was high at lower cell density and was strongly suppressed at high cell density. These results suggest that HGF may act as a renotropic factor in compensatory renal growth or renal regeneration in vivo.  相似文献   

18.
The extracellular protease urokinase is known to be crucially involved in morphogenesis, tissue repair and tumor invasion by mediating matrix degradation and cell migration. Hepatocyte growth factor/scatter factor (HGF/SF) is a secretory product of stromal fibroblasts, sharing structural motifs with enzymes of the blood clotting cascade, including a zymogen cleavage site. HGF/SF promotes motility, invasion and growth of epithelial and endothelial cells. Here we show that HGF/SF is secreted as a single-chain biologically inactive precursor (pro-HGF/SF), mostly found in a matrix-associated form. Maturation of the precursor into the active alpha beta heterodimer takes place in the extracellular environment and results from a serum-dependent proteolytic cleavage. In vitro, pro-HGF/SF was cleaved at a single site by nanomolar concentrations of pure urokinase, generating the active mature HGF/SF heterodimer. This cleavage was prevented by specific urokinase inhibitors, such as plasminogen activator inhibitor type-1 and protease nexin-1, and by antibodies directed against the urokinase catalytic domain. Addition of these inhibitors to HGF/SF responsive cells prevented activation of the HGF/SF precursor. These data show that urokinase acts as a pro-HGF/SF convertase, and suggest that some of the growth and invasive cellular responses mediated by this enzyme may involve activation of HGF/SF.  相似文献   

19.
20.
The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20–24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号