首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Over the past several years, it has become apparent that enteropathogens activate cell death programs. For Salmonella and Shigella species, the induction of cell death is required for pathogenesis, and the mechanisms by which these bacteria induce cell death is an area of intense investigation. Although initial studies suggested that Salmonella induce cell death through an apoptotic pathway, recent studies demonstrate that cell death occurs through a unique caspase 1-dependent mechanism.  相似文献   

2.
The terms senescence and programmed cell death (PCD) have led to some confusion. Senescence as visibly observed in, for example, leaf yellowing and petal wilting, has often been taken to be synonymous with the programmed death of the constituent cells. PCD also obviously refers to cells, which show a programme leading to their death. Some scientists noted that leaf yellowing, if it has not gone too far, can be reversed. They suggested calling leaf yellowing, before the point of no return, 'senescence' and the process after it 'PCD'. However, this runs into several problems. It is counter to the historical definitions of senescence, both in animal and plant science, which stipulate that senescence is programmed and directly ends in death. It would also mean that only leaves and shoots show senescence, whereas several other plant parts, where reversal has not (yet) been shown, have no senescence, but only PCD. This conflicts with ordinary usage (as in root and flower senescence). Moreover, a programme can be reversible and therefore it is not counter to logic to regard the cell death programme as potentially reversible. In green leaf cells a decision to die, in a programmed way, has been taken, in principle, before the cells start to remobilize their contents (that is, before visible yellowing) and only rarely is this decision reversed. According to the arguments developed here there are no good reasons to separate a senescence phase and a subsequent PCD phase. Rather, it is asserted, senescence in cells is the same as PCD and the two are fully synchronous.  相似文献   

3.
Nitric oxide (NO) is a short-lived gaseous free radical that predominantly functions as a messenger and effector molecule. It affects a variety of physiological processes, including programmed cell death (PCD) through cyclic guanosine monophosphate (cGMP)-dependent and-independent pathways. In this field, dominant discoveries are the diverse apoptosis networks in mammalian cells, which involve signals primarily via death receptors (extrinsic pathway) or the mitochondria (intrinsic pathway) that recruit caspases as effector molecules. In plants, PCD shares some similarities with animal cells, but NO is involved in PCD induction via interacting with pathways of phytohormones. NO has both promoting and suppressing effects on cell death, depending on a variety of factors, such as cell type, cellular redox status, and the flux and dose of local NO. In this article, we focus on how NO regulates the apoptotic signal cascade through protein S-nitrosylation and review the recent progress on mechanisms of PCD in both mammalian and plant cells.  相似文献   

4.
5.
The review summarizes information from recent literature and results of the authors' own investigations concerning dysbalance of programmed cell death in establishment of a long-term virus persistense. The article discusses molecular mechanisms of apoptosis modulation of immune cellls by persistent viruses.  相似文献   

6.
Unicellular organisms, such as the protozoan parasite Leishmania, can be stimulated to show some morphological and biochemical features characteristic of mammalian apoptosis. This study demonstrates that under a variety of stress conditions such as serum deprivation, heat shock and nitric oxide, cell death can be induced leading to genomic DNA fragmentation into oligonucleosomes. DNA fragmentation was observed, without induction, in the infectious stages of the parasite, and correlated with the presence of internucleosomal nuclease activity, visualisation of 45 to 59 kDa nucleases and detection of TUNEL-positive nuclei. DNA fragmentation was not dependent on active effector downstream caspases nor on the lysosomal cathepsin L-like enzymes CPA and CPB. These data are consistent with the presence of a caspase-independent cell death mechanism in Leishmania, induced by stress and differentiation that differs significantly from metazoa.  相似文献   

7.
Necrosis: a specific form of programmed cell death?   总被引:17,自引:0,他引:17  
For a long time necrosis was considered as an alternative to programmed cell death, apoptosis. Indeed, necrosis has distinct morphological features and it is accompanied by rapid permeabilization of plasma membrane. However, recent data indicate that, in contrast to necrosis caused by very extreme conditions, there are many examples when this form of cell death may be a normal physiological and regulated (programmed) event. Various stimuli (e.g., cytokines, ischemia, heat, irradiation, pathogens) can cause both apoptosis and necrosis in the same cell population. Furthermore, signaling pathways, such as death receptors, kinase cascades, and mitochondria, participate in both processes, and by modulating these pathways, it is possible to switch between apoptosis and necrosis. Moreover, antiapoptotic mechanisms (e.g., Bcl-2/Bcl-x proteins, heat shock proteins) are equally effective in protection against apoptosis and necrosis. Therefore, necrosis, along with apoptosis, appears to be a specific form of execution phase of programmed cell death, and there are several examples of necrosis during embryogenesis, a normal tissue renewal, and immune response. However, the consequences of necrotic and apoptotic cell death for a whole organism are quite different. In the case of necrosis, cytosolic constituents that spill into extracellular space through damaged plasma membrane may provoke inflammatory response; during apoptosis these products are safely isolated by membranes and then are consumed by macrophages. The inflammatory response caused by necrosis, however, may have obvious adaptive significance (i.e., emergence of a strong immune response) under some pathological conditions (such as cancer and infection). On the other hand, disturbance of a fine balance between necrosis and apoptosis may be a key element in development of some diseases.  相似文献   

8.
9.
10.
Cell death: programmed, apoptosis, necrosis, or other?   总被引:8,自引:0,他引:8  
There are at least two major types of active or physiological cell death. The most well-known form, apoptosis or Type I, involves early nuclear collapse, condensation of chromatin, generation of nucleosomal ladders, and cell fragmentation with little or no early alteration of lysosomes. It is most commonly seen in cells deriving from highly mitotic lines, and the cells are phagocytosed by neighboring cells or infiltrating macrophages. In metamorphosing or secretory cells, and under conditions where the majority of cells die, the bulk of the cytoplasm is consumed by expansion of the lysosomal system well before nuclear collapse is manifest. This form of cell death has been termed Type II cell death, and we revert to this terminology. The requirement for protein synthesis is more characteristic of Type II cell death in developmental situations than it is for Type I cell death. The variations seen force a reassessment of those aspects of physiological cell death that are truly universal, thereby focusing attention on the biology of the process. A better understanding of the biology and morphology of dying cells will help clarify the significance of the molecular and biochemical findings.  相似文献   

11.
The study of giant cells in populations of different tumor cells and evaluation of their role in cancer development is an expanding field. The formation of giant cells has been shown to be followed by mitotic catastrophe, apoptosis, necrosis, and other types of cell elimination. Reports also demonstrate that giant cells can escape cell death and give rise to new cancer cells. However, it is not known if the programmed cell death is involved in this type of cell cycle disorders. Here we describe principal events that are observed during giant cell formation. We also consider the role of giant cells in cancer development, taking into account both published work and our own recent data in this field.  相似文献   

12.
Apoptosis is common during spermatogenesis. Here, it was tested whether apoptosis could be induced in sperm after ejaculation. There were several lines of evidence to indicate that sperm are resistant to induction of apoptosis. First, incubation of bull sperm at temperatures characteristic of normothermia (38.5 °C) or heat shock (40 and 41 °C) for 4 h did not increase the proportion of sperm positive for the TUNEL reaction. There was also no reduction in mitochondrial polarity caused by exposure to 40 or 41 °C. Incubation at 38.5 °C (least-squares mean ± SEM = 4.0 ± 1.4%), 40 °C (6.2 ± 1.4%), and 41 °C (7.0 ± 1.4%) for 24 h did increase the proportion of sperm that were TUNEL positive slightly as compared to non-incubated control sperm (1.0 ± 1.4%). However, the increase in TUNEL labeling was not affected by incubation temperature and occurred even in the presence of the group II caspase inhibitor, z-DEVD-fmk. In addition, exposure of bull sperm to carbonyl cyanide 3-chlorophenylhydrazone (CCCP), which depolarizes mitochondrial membranes, did not increase TUNEL labeling. Stallion sperm were also resistant to increased TUNEL labeling in response to incubation at 41 °C for 4 h or exposure to CCCP. Western blotting was performed to determine whether failure of induction of apoptosis was due to aberrant caspase activation. Procaspase-9 was detected in bull sperm, but cleavage to caspase-9 was not induced by short-term aging at 38.5, 40, or 41 °C, or exposure to CCCP. Procaspase-3 was not detected in bull spermatozoa. In conclusion, post-ejaculatory bull and stallion sperm were resistant to induction of apoptosis; this resistance, at least in bulls, was due to refractoriness of mitochondria to heat shock-induced depolarization, lack of activation of procaspase-9, and an absence of procaspase-3.  相似文献   

13.
Eukaryotic cells have to constantly cope with environmental cues and integrate developmental signals. Cell survival or death is the only possible outcome. In the field of animal biology, tremendous efforts have been put into the understanding of mechanisms underlying cell fate decision. Distinct organelles have been proven to sense a broad range of stimuli and, if necessary, engage cell death signalling pathway(s). Over the years, forward and reverse genetic screens have uncovered numerous regulators of programmed cell death (PCD) in plants. However, to date, molecular networks are far from being deciphered and, apart from the autophagic compartment, no organelles have been assigned a clear role in the regulation of cellular suicide. The endomembrane system (ES) seems, nevertheless, to harbour a significant number of cell death mediators. In this review, the involvement of this system in the control of plant PCD is discussed in‐depth, as well as compared and contrasted with what is known in animal and yeast systems.  相似文献   

14.
Research on programmed cell death in plants is providing insight into the primordial mechanism of programmed cell death in all eukaryotes. Much of the attention in studies on animal programmed cell death has focused on determining the importance of signal proteases termed caspases. However, it has recently been shown that cell death can still occur even when the caspase cascade is blocked, revealing that there is an underlying oncotic default pathway. Many programmed plant cell deaths also appear to be oncotic. Shared features of plant and animal programmed cell death can be used to deduce the primordial components of eukaryotic programmed cell death. From this perspective, we must ask whether the mitochondrion is a common factor that can serve in plant and animal cell death as a stress sensor and as a dispatcher of programmed cell death.  相似文献   

15.
A distinct group of receptors including DCC, UNC5, RET and Ptc1 is known to function in ligand-dependent neuronal growth and differentiation or axon guidance. Acting as "dependence receptors", they may also regulate neuronal cell survival by inducing apoptosis in the absence of cognate ligand. Receptor-initiated apoptosis requires proteolytic (caspase) cleavage and exposure of a pro-apoptotic region in the cytoplasmic domains of the receptors. In contrast, classical apoptosis induced by growth factor or cytokine deprivation involves loss of survival signaling without receptor cleavage. DCC, UNC5, RET and Ptc1 are downregulated or mutated in diverse cancers, and show properties characteristic of tumor suppressors, consistent with their ability to promote neuronal cell death. Dysfunctional dependence receptors have been linked to the loss of specific neurons in certain inherited and neurodegenerative diseases. Dependence receptor-initiated apoptosis represents a novel paradigm for the controlled removal of specific cells during neural development and elimination of malignant cells that have strayed beyond regions of ligand availability.  相似文献   

16.
17.
"Nothing in biology makes sense except in the light of evolution", wrote Theodosius Dobzhansky, one of the founders of the Modern Synthesis that led to the unification of evolutionary theory and genetics in the midst of the 20th century. Programmed cell death is a genetically regulated process of cell suicide that is central to the development, homeostasis and integrity of multicellular organisms. Conversely, the dysregulation of mechanisms controlling cell suicide plays a role in the pathogenesis of a wide range of diseases. While great progress has been achieved in the unveiling of the molecular mechanisms of programmed cell death, a new, and somehow puzzling level of complexity has recently begun to emerge, suggesting i) that several different self destruction pathways may exist and operate in parallel in our cells, and ii) that molecular effectors of cell suicide might also perform other functions unrelated to cell death induction and crucial to cell survival, such as cell differentiation, metabolism, and the regulation of the cell cycle. These new findings, with important physiopathological and therapeutic implications, seem at odds with the paradigm of programmed cell death derived from the studies of Caenorhabditis elegans, which led to the concept of the existence of selective, bona fide death genes that emerged and became selected for their sole capacity to execute or repress cell death. In this review, I will argue that this new level of complexity might only make sense and be understood when considered in a broader evolutionary context than that of our phylogenetic divergence from C. elegans. A new view of the regulated cell death pathways emerges when one attempts to ask the question of when and how they may have become selected during a timeline of 4 billion years, at the level of ancestral single-celled organisms, including the bacteria. I will argue that there may be no such thing as a bona fide genetic cell death program. Rather, in the framework of a model that I have termed the "original sin" hypothesis, I have proposed the existence of an initial pleiotropy of the molecular tools involved in the control and execution of self-destruction--an ancestral involvement in both pro-life and pro-death activities. I will discuss how this hypothesis may be reconciled with the C. elegans paradigm of programmed cell death. Finally I will discuss how an ancestral level of pleiotropic functions of the molecular tools involved in the control of cell death, aging and genetic diversification might have favored their initial selection, their constant availability for de novo selection, and their progressive propagation in most--if not all--species during the course of evolution.  相似文献   

18.
Promyelocytic leukaemia protein nuclear bodies (PML-NBs) are nuclear structures whose function is still poorly understood. They are implicated in various biological functions, such as viral infection, cellular transformation, innate immunity and growth control, and they might be dynamic hubs sensing stress and DNA damage. Data from PML(-/-) mice suggest that PML-NBs are involved in apoptosis via caspase-independent mechanisms, probably involving p53-dependent and independent pathways. However, the recently demonstrated co-localization of caspase-2 within the PML-NB nuclear structures presents a new paradigm for nuclear cell death. Here, we show that these nuclear structures have a protein known as SP100 that could contain a caspase recruitment domain (CARD). If verified experimentally, this discovery will suggest a mechanism by which caspase-2 could be recruited into the complex and ultimately lead to apoptosis.  相似文献   

19.
20.
Calcium signalling and pancreatic cell death: apoptosis or necrosis?   总被引:2,自引:0,他引:2  
Secretagogues, such as cholecystokinin and acetylcholine, utilise a variety of second messengers (inositol trisphosphate, cADPR and nicotinic acid adenine dinucleotide phosphate) to induce specific oscillatory patterns of calcium (Ca(2+)) signals in pancreatic acinar cells. These are tightly controlled in a spatiotemporal manner, and are coupled to mitochondrial metabolism necessary to fuel secretion. When Ca(2+) homeostasis is disrupted by known precipitants of acute pancreatitis, for example, hyperstimulation or non-oxidative ethanol metabolites, Ca(2+) stores (endoplasmic reticulum and acidic pool) become depleted and sustained cytosolic [Ca(2+)] elevations replace transient signals, leading to severe consequences. Sustained mitochondrial depolarisation, possibly via opening of the mitochondrial permeability transition pore (MPTP), elicits cellular ATP depletion that paralyses energy-dependent Ca(2+) pumps causing cytosolic Ca(2+) overload, while digestive enzymes are activated prematurely within the cell; Ca(2+)-dependent cellular necrosis ensues. However, when stress to the acinar cell is milder, for example, by application of the oxidant menadione, release of Ca(2+) from stores leads to oscillatory global waves, associated with partial mitochondrial depolarisation and transient MPTP opening; apoptotic cell death is promoted via the intrinsic pathway, when associated with generation of reactive oxygen species. Apoptosis, induced by menadione or bile acids, is potentiated by inhibition of an endogenous detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), suggesting its importance as a defence mechanism that may influence cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号