首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sodium ionophore monensin was used as an inhibitor of Golgifunction to study the secretory event in suspension-culturedsycamore cells. The morphological changes induced by monensinwere recorded. Concurrent studies of the disturbance causedby the drug were carried out by biochemical, cytochemical andimmunocytochemical techniques. Monensin induced accumulationof smooth and coated vesicles in the vicinity of the Golgi apparatus,swelling of Golgi cisternae and also provoked the formationof extracytoplasmic pockets between the plasma membrane andthe cell wall. Cytochemical tests for polysaccharides and immunolocalizationof secreted pectins, recognized by the monoclonal antibody JIM7, were performed, and the results indicated that the biosynthesisand/or processing machinery of polysaccharides was affectedby the drug. In contrast, immunolocalization of glycoproteins,recognized by the monoclonal antibodies JIM 84 and JIM 13 demonstratedthat the accumulation of vesicles in the cytoplasm were Golgiderived, and that the secretion of glycoproteins was not drasticallyaffected by monensin. Fluorography of radiolabelled proteinsdemonstrated that in this system the secretion of proteins wasnot qualitatively changed by monensin. The implications of theseresults are discussed in the light of the current hypotheseson the effects of monensin on the secretory pathway. Key words: Golgi apparatus, immunocytochemistry, monensin, secretion  相似文献   

2.
To elucidate the possible roles of pectins during the growth of angiosperm pollen, we studied the distribution and changes in the properties of pectin in the pollen grains and tubes of Camellia japonica, Lilium longiflorum, and five other species at different growth stages by immunoelectron microscopy with monoclonal antibodies JIM5, against de-esterified pectin, and JIM7, against esterified pectin. We also studied the localization of arabinogalactan proteins, which are regarded as pectin-binding proteins, with monoclonal antibodies JIM13 and LM2, against arabinogalactan proteins. Similar results were obtained for all species: JIM5 labeled the intine and part of the callose layer in germinated pollen grains, and labeled the outer layer of the tube wall, the Golgi vesicles, and the callose plug in the pollen germinated in vitro, but did not label any part of immature pollen grains. In contrast, JIM7 labeled the intine of both immature and mature pollen grains, labeled the Golgi vesicles around the Golgi bodies, and strongly labeled the outer layer of the cell wall and the Golgi vesicles in the tube tip region. On the other hand, the distribution of arabinogalactan proteins detected with JIM13 was different for each species, and does not suggest a close relationship between pectin and arabinogalactan proteins. LM2 scarcely reacted with the specimens. We discuss the contribution of pectins to tube wall formation and fertilization and deduce a mechanism of callose plug formation.  相似文献   

3.
The ultrastructure, cuticle, and distribution of pectic epitopes in outer periclinal walls of protodermal cells of Daucus carota zygotic and somatic embryos from solid and suspension culture were investigated. Lipid substances were present as a continuous layer in zygotic and somatic embryos cultured on solid medium. Somatic embryos from suspension cultures were devoid of cuticle. The ultrastructure of the outer walls of protodermis of embryos was similar in zygotic and somatic embryos from solid culture. Fibrillar material was observed on the surface of somatic embryos. In zygotic embryos, in cotyledons and root pectic epitopes recognised by the antibody JIM5 were observed in all cell walls. In hypocotyls of these embryos, these pectic epitopes were not present in the outer periclinal and anticlinal walls of the protodermis. In somatic embryos from solid media, distribution of pectic epitopes recognised by JIM5 was similar to that described for their zygotic counterparts. In somatic embryos from suspension culture, pectic epitopes recognised by JIM5 were detected in all cell walls. In the cotyledons and hypocotyls, a punctate signal was observed on the outside of the protodermis. Pectic epitopes recognised by JIM7 were present in all cell walls independent of embryo organs. In zygotic embryos, this signal was punctate; in somatic embryos from both cultures, this signal was uniformly distributed. In embryos from suspension cultures, a punctate signal was detected outside the surface of cotyledon and hypocotyl. These data are discussed in light of current models for embryogenesis and the influence of culture conditions on cell wall structure.  相似文献   

4.
We have identified and characterised the temporal and spatial distribution of the homogalacturonan (HG) and arabinogalactan proteins (AGP) epitopes that are recognised by the antibodies JIM5, JIM7, LM2, JIM4, JIM8 and JIM13 during ovule differentiation in Larix decidua Mill. The results obtained clearly show differences in the pattern of localisation of specific HG epitopes between generative and somatic cells of the ovule. Immunocytochemical studies revealed that the presence of low-esterified HG is characteristic only of the wall of megasporocyte and megaspores. In maturing female gametophytes, highly esterified HG was the main form present, and the central vacuole of free nuclear gametophytes was particularly rich in this category of HG. This pool will probably be used in cell wall building during cellularisation. The selective labelling obtained with AGP antibodies indicates that some AGPs can be used as markers for gametophytic and sporophytic cells differentiation. Our results demonstrated that the AGPs recognised by JIM4 may constitute molecules determining changes in ovule cell development programs. Just after the end of meiosis, the signal detected with JIM4 labelling appeared only in functional and degenerating megaspores. This suggests that the antigens bound by JIM4 are involved in the initiation of female gametogenesis in L. decidua. Moreover, the analysis of AGPs distribution showed that differentiation of the nucellus cells occurs in the very young ovule stage before megasporogenesis. Throughout the period of ovule development, the pattern of localisation of the studied AGPs was different both in tapetum cells surrounding the gametophyte and in nucellus cells. Changes in the distribution of AGPs were also observed in the nucellus of the mature ovule, and they could represent an indicator of tissue arrangement to interact with the growing pollen tube. The possible role of AGPs in fertilisation is also discussed.  相似文献   

5.
Brefeldin A (BFA), a fungal fatty acid derivative, is a potentagent for disrupting the Golgi apparatus in plant and animalcells. We have examined its action using marker antibodies whichrecognize an epitope in the plant Golgi apparatus (JIM 84),and for proteins held in the endoplasmic reticulum by the HDELER-retention signal (2E7), in combination with double immunolabelling.In maize root cells, disruption of the ER occurs after breakdownof the Golgi apparatus is initiated. The redistribution of theGolgi is shown to be predominantly separate from that of theER, and as with the Golgi, the action of BFA on the ER is alsoreversible. The mode of action of BFA on the ER and Golgi ofplant cells is compared with that described for animal cells. Key words: Zea mays L, Brefeldin A, plant cells, endoplasmic reticulum, Golgi apparatus  相似文献   

6.
Endocytosis in secretory cells   总被引:2,自引:0,他引:2  
Membranes of secretion granules inserted during exocytosis into the luminal plasma membranes of glandular cells are retrieved by endocytosis as revealed by electron dense tracers applied selectively to the apical cell surfaces. Two major pathways that endocytic vesicles may take are described: (1) a direct route to the Golgi complex (e.g. in parotid and exocrine pancreas) with later appearance of the tracer in the periphery of mature secretion granules; (2) an indirect route with lysosomes as a first station and the subsequent appearance of tracer in stacked Golgi cisternae. It is presumed that some of the retrieved membrane follows the same pathways and is reutilized in the secretory cycle.  相似文献   

7.
Li YQ  Mareck A  Faleri C  Moscatelli A  Liu Q  Cresti M 《Planta》2002,214(5):734-740
Pectin methylesterases (PMEs) were detected in tobacco ( Nicotiana tabacum) pollen tubes grown in vitro. Seven PME isoforms exhibiting a wide isoelectric-point (pI) range (5.3-9.1) were found in crude extracts of pollen tubes. These isoforms were mainly retrieved in supernatants after low- and high-speed separation of the crude extract. Two isoforms, with pIs 5.5 and 7.3 and molecular weight about 158 kDa, were detected by immunoblotting with anti-flax PME antiserum. Localization of pectins and PME isoforms in pollen tubes was investigated by immunogold labelling with JIM5 monoclonal antibodies and anti-flax PME antiserum, respectively. In germinated pollen grains, two PME isoforms were mainly detected in the exine, Golgi apparatus and secretory vesicles. In pollen tubes the same two PME isoforms were distributed along the outer face of the plasma membrane in the vicinity of the inner layer of the cell wall, in the Golgi and around secretory vesicles. In pollen grains, PME isoforms were, in some cases, mixed with acidic pectins in proximity to the outer surface of the plasma membrane. In pollen tubes the presence of PMEs inside secretory vesicles carrying esterified pectins supports the hypothesis that, during pollen tube growth, PMEs could be transferred by secretory vesicles in a precursor form and be activated at the tip where exocytosis takes place.  相似文献   

8.
Recently, we have reported that cell wall pectins are internalized into apical meristem root cells. In cells exposed to the fungal metabolite brefeldin A, all secretory pathways were inhibited, while endocytic pathways remained intact, resulting in accumulation of internalized cell wall pectins within brefeldin A-induced compartments. Here we report that, in addition to the already published cell wall epitopes, rhamnogalacturonan I and xyloglucans also undergo large-scale internalization into dividing root cells. Interestingly, multilamellar endosomes were identified as compartments internalizing arabinan cell wall pectins reactive to the 6D7 antibody, while large vacuole-like endosomes internalized homogalacturonans reactive to the 2F4 antibody. As all endosomes belong topographically to the exocellular space, cell wall pectins deposited in these "cell wall islands", enclosed by the plasma-membrane-derived membrane, are ideally suited to act as temporary stores for rapid formation of cell wall and generation of new plasma membrane. In accordance with this notion, we report that all cell wall pectins and xyloglucans that internalize into endosomes are highly enriched within cytokinetic cell plates and accumulate within brefeldin A compartments. On the other hand, only small amounts of the pectins reactive to the JIM7 antibody, which are produced in the Golgi apparatus, localize to cell plates and they do not accumulate within brefeldin A compartments. In conclusion, meristematic root cells have developed pathways for internalization and recycling of cell wall molecules which are relevant for plant-specific cytokinesis.  相似文献   

9.
Eukaryotic cells utilize two main secretory pathways to transport proteins to the extracellular space. Proteins with a leader signal sequence often undergo co‐translational transport into the endoplasmic reticulum (ER), and then to the Golgi apparatus before they reach their destination. This pathway is called the conventional secretory pathway. Proteins without signal peptides can bypass this ER‐Golgi system and are secreted by a variety of mechanisms collectively called the unconventional secretory pathway. The molecular mechanisms of unconventional secretion are emerging. Autophagy is a conserved bulk degradation mechanism that regulates many intracellular functions. Recent evidence implicates autophagy in the secretory pathway. This review focuses on potential secretory roles of autophagy and how they could modulate the functions of innate immune cells that secrete a wide range of mediators in response to environmental and biological stimuli. We provide a brief overview of the secretory pathways, enumerate the potential mechanistic themes by which autophagy interacts with these pathways and describe their relevance in the context of innate immune cell function.  相似文献   

10.
Multi-vesicular bodies in endocytosis and protoplasts are special cellular structures that are consid-ered to be originated from invagination of plasma membranes. However, the genesis and function of multi-vesicular bodies, the relationship with Golgi bodies and cell walls, and their secretory pathways remain controversial and ambiguous. Using a monoclonal antibody against an animal 58K protein, we have detected, by Western blotting and confocal microscopy, that a 58K-like protein is present in the calli of Arabidopsis thaliana and Hypericum perforatum. The results of immuno-electron microscopy showed that the 58K-like protein was located in the cisternae of Golgi bodies, secretory vesicles, multi-vesicular bodies, cell walls and vacuoles in callus of Arabidopsis thaliana, suggesting that the multi-vesicular bodies may be originated from Golgi bodies and function as a transporter carrying substances synthesized in Golgi bodies to cell walls and vacuoles. It seems that multi-vesicular bodies have a close relationship with the development of the cell wall and vacuole. The possible secretory pathways of multi-vesicular bodies might be in exocytosis, in which multi-vesicular bodies carry sub-stances to the cell wall for its construction, and in endocytosis, in which multi-vesicular bodies carry substances to the vacuole for its development, depending on what they carry and where the materials are transported. We hence propose that there is more than one pathway for the secretion of multi-vesicular bodies. In addition, our results provided a paradigm that a plant molecule, such as the 58k-like protein in callus of Arabidopsis thaliana, can be detected using a cross-reactive monoclonal antibody induced by an animal protein, and illustrate the existence of analog molecules in both animal and plant kingdoms.  相似文献   

11.
Labeling of the Golgi complex with the lectin conjugate wheat germ agglutinin-horseradish peroxidase (WGA-HRP), which binds to cell surface membrane and enters cells by adsorptive endocytosis, was analyzed in secretory cells of the anterior, intermediate, and posterior lobes of mouse pituitary gland in vivo. WGA-HRP was administered intravenously or by ventriculo-cisternal perfusion to control and salt-stressed mice; post-injection survival times were 30 min-24 hr. Peroxidase reaction product was identified within the extracellular clefts of anterior and posterior pituitary lobes through 24 hr but was absent in intermediate lobe. Endocytic vesicles, spherical endosomes, tubules, dense and multivesicular bodies, the trans-most saccule of the Golgi complex, and dense-core secretory granules attached or unattached to the trans Golgi saccule were peroxidase-positive in the different types of anterior pituitary cells and in perikarya of supraoptico-neurohypophyseal neurons; endoplasmic reticulum and the cis and intermediate Golgi saccules in the same cell types were consistently devoid of peroxidase reaction product. Dense-core secretory granules derived from cis and intermediate Golgi saccules in salt-stressed supraoptic perikarya likewise failed to exhibit peroxidase reaction product. The results suggest that in secretory cells of anterior and posterior pituitary lobes, WGA-HRP, initially internalized with cell surface membrane, is eventually conveyed to the trans-most Golgi saccule, in which the lectin conjugate and associated membrane are packaged in dense-core secretory granules for export and potential exocytosis of the tracer. Endoplasmic reticulum and the cis and intermediate Golgi saccules appear not to be involved in the endocytic/exocytic pathways of pituitary cells exposed to WGA-HRP.  相似文献   

12.
A number of pathways for intracellular membrane traffic have been detected in various cell types. The major established routes are: 1) the lysosomal pathway, which is the major route utilized in phagocytic and cultured cells; 2) the transcellular route, which represents the major type of traffic in nonfenestrated, capillary endothelial cells and which also appears to be the preferred route for the transport of immunoglobulins (intact) across cells; 3) the exocytosis pathway, utilized in secretory cells for discharge of secretory products, and which is also believed to be used for delivery of intrinsic membrane glycoproteins; 4) the plasmalemma to Golgi route, also highly developed in secretory cells, which is believed to be utilized for the recycling of secretory granule membranes; and 5) the biosynthetic pathways for transport of secretory products, lysosomal enzymes, and membrane proteins from the endoplasmic reticulum to the Golgi complex and for transport of lysosomal enzymes from the Golgi complex to lysosomes. It has become clear that cells repeatedly reutilize or recycle the membranes used in these various transport operations. Clathrin-coated vesicles have been found to be involved in transport along all these routes, which suggests that there are multiple populations of coated vesicles with different transport functions in every cell. It has become clear that the Golgi complex is the site where the membrane and product traffic converges and is sorted and directed to its correct destinations. The validation of a transport route from the cell surface to the Golgi complex raises the possibility that bound ligands and membrane constituents could be modified or repaired in transit during recycling through the Golgi complex, which is a biosynthetic compartment.  相似文献   

13.
The general morphology of the mucous gland cell and the nature of the secretory granule in esophageal glands of the newly hatched chick have been described. Lightly basophilic supporting cells, attached to secretory cells by desmosomes and containing tonofilaments, are located on the basal lamina. Electron microscopic studies showed a morphological polarity of the Golgi complex which suggests that mucous precursors are transported from other sites within the cell to the Golgi complex for further packaging into secretory granules. Finally, acid mucopolysaccharides (AMPS) were specifically stained using the Thorotrast technique and not detected in the rough endoplasmic reticulum, the transitional elements, or in the lamellae at the forming face of the Golgi complex. Conversely, AMPS are found in the vicinity of the mature face of the Golgi complex, and in the secretory granules. The acquisition of cytochemical reactivity for AMPS within the Golgi complex is discussed.  相似文献   

14.
How organelle identity is established and maintained, and how organelles divide and partition between daughter cells, are central questions of organelle biology. For the membrane-bound organelles of the secretory and endocytic pathways [including the endoplasmic reticulum (ER), Golgi complex, lysosomes, and endosomes], answering these questions has proved difficult because these organelles undergo continuous exchange of material. As a result, many "resident" proteins are not localized to a single site, organelle boundaries overlap, and when interorganellar membrane flow is interrupted, organelle structure is altered. The existence and identity of these organelles, therefore, appears to be a product of the dynamic processes of membrane trafficking and sorting. This is particularly true for the Golgi complex, which resides and functions at the crossroads of the secretory pathway. The Golgi receives newly synthesized proteins from the ER, covalently modifies them, and then distributes them to various final destinations within the cell. In addition, the Golgi recycles selected components back to the ER. These activities result from the Golgi's distinctive membranes, which are organized as polarized stacks (cis to trans) of flattened cisternae surrounded by tubules and vesicles. Golgi membranes are highly dynamic despite their characteristic organization and morphology, undergoing rapid disassembly and reassembly during mitosis and in response to perturbations in membrane trafficking pathways. How Golgi membranes fragment and disperse under these conditions is only beginning to be clarified, but is central to understanding the mechanism(s) underlying Golgi identity and biogenesis. Recent work, discussed in this review, suggests that membrane recycling pathways operating between the Golgi and ER play an indispensable role in Golgi maintenance and biogenesis, with the Golgi dispersing and reforming through the intermediary of the ER both in mitosis and in interphase when membrane cycling pathways are disrupted.  相似文献   

15.
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towards embryogenesis, thereby producing embryos which can further give rise to haploid and double haploid plants, important biotechnological tools in plant breeding. Microspore embryogenesis constitutes a convenient system for studying the mechanisms underlying cell reprogramming and embryo formation. In this work, the dynamics of both AGP presence and distribution were studied during pollen development and microspore embryogenesis in Brassica napus, by employing a multidisciplinary approach using monoclonal antibodies for AGPs (LM2, LM6, JIM13, JIM14, MAC207) and analysing the expression pattern of the BnAGP Sta 39–4 gene. Results showed the developmental regulation and defined localization of the studied AGP epitopes during the two microspore developmental pathways, revealing different distribution patterns for AGPs with different antigenic reactivity. AGPs recognized by JIM13, JIM14 and MAC207 antibodies were related to pollen maturation, whereas AGPs labelled by LM2 and LM6 were associated with embryo development. Interestingly, the AGPs labelled by JIM13 and JIM14 were induced with the change of microspore fate. Increases in the expression of the Sta 39–4 gene, JIM13 and JIM14 epitopes found specifically in 2–4 cell stage embryo cell walls, suggested that AGPs are early molecular markers of microspore embryogenesis. Later, LM2 and LM6 antigens increased progressively with embryo development and localized on cell walls and cytoplasmic spots, suggesting an active production and secretion of AGPs during in vitro embryo formation. These results give new insights into the involvement of AGPs as potential regulating/signalling molecules in microspore reprogramming and embryogenesis.  相似文献   

16.
To date, the lack of a method for inducing plant cells and their Golgi stacks to differentiate in a synchronous manner has made it difficult to characterize the nature and extent of Golgi retailoring in biochemical terms. Here we report that auxin deprivation can be used to induce a uniform population of suspension-cultured tobacco (Nicotiana tabacum cv BY-2) cells to differentiate synchronously during a 4-d period. Upon removal of auxin, the cells stop dividing, undergo elongation, and differentiate in a manner that mimics the formation of slime-secreting epidermal and peripheral root-cap cells. The morphological changes to the Golgi apparatus include a proportional increase in the number of trans-Golgi cisternae, a switch to larger-sized secretory vesicles that bud from the trans-Golgi cisternae, and an increase in osmium staining of the secretory products. Biochemical alterations include an increase in large, fucosylated, mucin-type glycoproteins, changes in the types of secreted arabinogalactan proteins, and an increase in the amounts and types of molecules containing the peripheral root-cap-cell-specific epitope JIM 13. Taken together, these findings support the hypothesis that auxin deprivation can be used to induce tobacco BY-2 cells to differentiate synchronously into mucilage-secreting cells.  相似文献   

17.
The structure of epitopes recognised by anti-pectin monoclonal antibodies (mAbs) has been investigated using a series of model lime-pectin samples with defined degrees and patterns of methyl esterification, a range of defined oligogalacturonides and enzymatic degradation of pectic polysaccharides. In immuno-dot-assays, the anti-homogalacturonan (HG) mAbs JIM5 and JIM7 both bound to samples with a wide range of degrees of methyl esterification in preference to fully de-esterified samples. In contrast, the anti-HG phage display mAb PAM1 bound most effectively to fully de-esterified pectin. In competitive inhibition ELISAs using fully methyl-esterified or fully de-esterified oligogalacturonides with 3-9 galacturonic acid residues, JIM5 bound weakly to a fully de-esterified nonagalacturonide but JIM7 did not bind to any of the oligogalacturonides tested. Therefore, optimal JIM5 and JIM7 binding occurs where specific but undefined methyl-esterification patterns are present on HG domains, although fully de-esterified HG samples contain sub-optimal JIM5 epitopes. The persistence of mAb binding to epitopes in pectic antigens, with 41% blockwise esterification (P41) and 43% random esterification (F43) subject to fragmentation by endo-polygalacturonase II (PG II) and endo-pectin lyase (PL), was also studied. Time course analysis of PG II digestion of P41 revealed that JIM5 epitopes were rapidly degraded, but a low level of PAM1 and JIM7 epitopes existed even after extensive digestion, indicating that some HG domains were more resistant to cleavage by PG II. The chromatographic separation of fragments produced by the complete digestion of P41 by pectin lyase indicated that a very restricted population of fragments contained the PAM1 epitope while a (1-->4)-beta-D-galactan epitope occurring on the side chains of pectic polysaccharides was recovered in a broad range of fractions.  相似文献   

18.
Protein kinases control Golgi function in both mitotic and interphase cells. In mitosis, phosphorylation of structural proteins by Cdk1 (cyclin-dependent kinase 1)-cyclin B, Polo-like and mitogen-activated protein kinases underlie changes in Golgi reorganization during cell division. While in interphase, signalling pathways that are associated with the Golgi control secretory function through a variety of mechanisms. Some of these, notably those involving protein kinase D and Ste20 family kinases, are also relevant for the establishment and maintenance of cell polarization and migration.  相似文献   

19.
In carnation shoots (Dianthus caryophyllus cv. Killer), hyperhydricity was induced in in vitro culture using a low agar concentration. Using transmission electron microscopy, cytochemical techniques and immunolocation of JIM5 and JIM7 pectin epitopes, we followed the sub-cellular modifications of cell walls in relation to peroxidase activity and hydrogen peroxide accumulation during hyperhydricity induction. Peroxidase activity revealed a significant induction of the stomatal and epidermal cells as well as of the intercellular spaces of hyperhydric leaves. Similarly, hydrogen peroxide accumulated in the epidermal cell walls and the intercellular spaces of hyperhydric leaves. Immunolocation of an epitope recognised by the JIM5 antibody revealed the main unesterified nature of the cell walls. Such an epitope was located in the epidermal cell walls as well as in the corners of cell junctions in control leaves. However, hyperhydric leaves showed a total reduction of JIM5 labelling in the corners of cell junctions and a significant reduction of the intercellular spaces and the middle lamella. Highly-methylsterified pectin, recognised by the JIM7 antibody, was present to a slight extent in cell walls in control and hyperhydric leaves. We propose that the altered anatomy observed in hyperhydric carnation leaves could be regulated by the concomitant actions of pectin methyl esterases and free radicals, modifying the structure of the pectin and polysaccharides of the cell walls.  相似文献   

20.
The ultrastructure of three types of gland cells of embryos and free-swimming larvae of Austramphilina elongata is described. Type I gland cells contain large, more or less round electron-dense granules which are formed by numerous Golgi complexes. Type II gland cells contain thread-like, membrane-bound secretory granules with longitudinally arranged microtubules inside the granules; secretory droplets are produced by Golgi complexes and the microtubules apparently condense in the cytoplasm or in the droplets. Type III gland cells contain irregular-ovoid membrane-bound granules with coiled up microtubules which have an electron-dense core; the granules are formed by secretionderived from Golgi complexes and the microtubules aggregate around and migrate into the secretion; microtubules are at first hollow and the early secretory granules have a central electron-dense region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号