首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different, independent, and alternative modes of mucilage excretion were found in the unicellular green alga Micrasterias denticulata Bréb. under constant culture conditions. The cells were capable of either excreting mucilage over all their cell surface or they extruded mucilage from one of their polar ends, which enabled directed movement such as photoorientation or escape from unfavorable environmental conditions. By means of a polyclonal antibody raised against Micrasterias mucilage, the secretory pathway of Golgi derived mucilage vesicles from their origin to their discharge was analyzed by means of conventional and energy filtering TEM. Depending on the stage of the cell cycle, mucilage vesicles were subjected to maturation processes. This may occur either after they have been pinched off from the dictyosomes (e.g. during cell growth) or when still connected to trans‐Golgi cisternae, as in the case of interphase cells. Only fully grown mature vesicles contained mucilage in its final composition as indicated by antibody labeling. After fusion of mucilage vesicles with vacuoles, no immunolabeling was found in vacuoles, indicating that the vesicle content was digested. Mucilage vesicles fused with the plasma membrane in areas of cell wall pores but were also able to excrete mucilage at any site directly through the respective cell wall layer. This result disproves earlier assumptions that the pore apparatus in desmids are the only mucilage excreting areas at the cell surface. Both mechanisms, excretion through the pores and through the cell wall, lead to formation of mucilage envelopes covering the entire cell surface.  相似文献   

2.
Carpospore differentiation in Faucheocolax attenuata Setch. can be separated into three developmental stages. Immediately after cleaving from the multinucleate gonimoblast cell, young carpospores are embedded within confluent mucilage produced by gonimoblast cells. These carpospores contain a large nucleus, few starch grains, concentric lamellae, as well as proplastids with a peripheral thylakoid and occasionally some internal (photosynthetic) thylakoids. Proplastids also contain concentric lamellar bodies. Mucilage with a reticulate fibrous substructure is formed within cytoplasmic concentric membranes, thus giving rise to mucilage sacs. Subsequently, these mucilage sacs release their contents, forming an initial reticulate deposition of carpospore wall material. Dictyosome vesicles with large, single dark-staining granules also contribute to wall formation and may create a separating layer between the mucilage and carpospore wall. During the latter stages of young carpospores, starch is polymerized in the perinuclear cytoplasmic area and is in close contact with endoplasmic reticulum. Intermediate-aged carpospores continue their starch polymerization. Dictyosomes deposit more wall material, in addition to forming fibrous vacuoles. Proplastids form thylakoids from concentric lamellar bodies. Mature carpospores are surrounded by a two-layered carpospore wall. Cytoplasmic constituents include large floridean starch granules, peripheral fibrous vacuoles, mature chloroplasts and curved dictyosomes that produce cored vesicles which in turn are transformed into adhesive vesicles. Pit connections remain intact between carpospores but begin to degenerate. This degeneration appears to be mediated by microtubules.  相似文献   

3.
Placoderm desmids (Conjugates, Chlorophyta) such as Closterium exhibit a gliding locomotory behavior. This results from the forceful extrusion of an acidic polysaccharide from one pole of the cell causing the cell to glide in the opposite direction. A biochemical and cytological analysis of gliding behavior was performed. The mucilage is a high molecular weight polysaccharide rich in glucuronic acid and fucose. Under normal growth conditions, 3 μg of mucilage is produced per cell in 30 days. Mucilage production increased 3–4 fold in cells challenged with low phosphate or nitrate conditions. A polyclonal antibody was raised against the mucilage and used in immunofluorescence studies. These results show that upon contact with another object Closterium aligns itself parallel to that object by a “jack-knife” motion. Subsequently, large amounts of mucilage are released to form elongate tubes enmeshing the cell with that object. In post-cytokinetic phases of the cell cycle, mucilage is extruded only through the pole of the developing semi-cell. Chlorotetracyclene-labeling of mucilage-secreting cells shows a correlation between calcium-rich loci on the cell surface and sites of mucilage release.  相似文献   

4.
Critical-point dried (CPD) cells from clonal cultures of Euglena gracilis Klebs (Z strain), E. deses Ehrb., E. tripteris (Duj.) Klebs and E. myxocylindracea Bold & MacEntee were examined by scanning electron microscopy. Flagellated motile cells of E. gracilis are naked except for a few strands of mucilage on the posterior tip. Flagellated cells of E. tripteris have a permanent mucilage coating often of uneven distribution and usually not as well developed as that of nonflagellated creeping cells which have a distinctive mucilage. In E. deses the coating appears rough due to the aggregation of isolated groups of strands above the cell surface. In E. tripteris the coating appears smooth except for breaks near the articulation of the pellicular strips where the mucilage may rise above the surface to form waves. At high magnification this mucilage consists of a network of strands generally lying parallel to the cell surface; the strands become obscure in some specimens. In E. myxocylindracea elongated, mucilage-coated cells contract to form spheres which undergo further mucilage deposition producing the mucilage covering of palmellae. As palmellae mature, the mucilage surface becomes less porous and the individuality of most mucilage strands is lost.  相似文献   

5.
Development,structure, and occurrence of secretory trichomes ofPharbitis   总被引:1,自引:1,他引:0  
Summary Secretory trichomes develop from epidermal cells on the leaf primordia and stem ofPharbitis nil. Following an initial growth phase, trichomes begin active secretion of a protein-carbohydrate mucilage. This mucilage covers the shoot apex and developing leaves ofPharbitis.The secretory cells possess cellular organelles in forms usually associated with actively secreting cells: many mitochondria, an elaborate network of rough endoplasmic reticulum (RER), many free ribosomes, and numerous dictyosomes. The role of the dictyosomes is twofold: 1. dictyosome vesicles bud coated vesicles which transport materials from the cell and, 2. dictyosome vesicles coalesce, forming large storage vesicles. The storage vesicles are surrounded by, and often in contact with, poculiform RER. The RER forms an interconnected network throughout the cytoplasm, extending from the nuclear envelope to the plasmalemma. Distended profiles of RER are frequently in direct contact with the plasmalemma. Thus, inPharbitis secretory trichomes, it is the coated vesicles and RER which are active in secretion export. These findings imply a secretory pathway which deviates from the usual pattern in glandular cells.Predoctoral fellow of National Science Foundation during part of the investigation.  相似文献   

6.
Root border cells lie on the surface of the root cap and secrete massive amounts of mucilage that contains polysaccharides and proteoglycans. Golgi stacks in the border cells have hypertrophied margins, reflecting elevated biosynthetic activity to produce the polysaccharide components of the mucilage. To investigate the three‐dimensional structures and macromolecular compositions of these Golgi stacks, we examined high‐pressure frozen/freeze‐substituted alfalfa root cap cells with electron microscopy/tomography. Golgi stacks in border cells and peripheral cells, precursor cells of border cells, displayed similar morphological features, such as proliferation of trans cisternae and swelling of the trans cisternae and trans‐Golgi network (TGN) compartments. These swollen margins give rise to two types of vesicles larger than other Golgi‐associated vesicles. Margins of trans‐Golgi cisternae accumulate the LM8 xylogalacturonan (XGA) epitope, and they become darkly stained large vesicles (LVs) after release from the Golgi. Epitopes for xyloglucan (XG), polygalacturonic acid/rhamnogalacturonan‐I (PGA/RG‐I) are detected in the trans‐most cisternae and TGN compartments. LVs produced from TGN compartments (TGN‐LVs) stained lighter than LVs and contained the cell wall polysaccharide epitopes seen in the TGN. LVs carrying the XGA epitope fuse with the plasma membrane only in border cells, whereas TGN‐LVs containing the XG and PGA/RG‐I epitopes fuse with the plasma membrane of both peripheral cells and border cells. Taken together, these results indicate that XGA is secreted by a novel type of secretory vesicles derived from trans‐Golgi cisternae. Furthermore, we simulated the collapse in the central domain of the trans‐cisternae accompanying polysaccharide synthesis with a mathematical model.  相似文献   

7.
Cultured, actively growing cells of Odentella sinensis secrete mucilage, forming gelatinous masses; the mucilage can be visualised with Alcian Blue. When examined live with the light microscope, many cells exhibited continuous small shuffing and rocking movements that could last for long periods (30-40 min); the cells, however, were not translocated and remained relatively fixed in position with respect to their neighbours. Ultrastructural examination of these cells showed prominent aggregations of mucilage vesicles, derived from the Golgi bodies, at the base of the labiate processes, each of which is close to an elevation bearing an ocellus. In Ditylum brightwellii, similar aggreations of these vesides were also located at teh labiate processes; this diatom, too, secretes mucilage but does not have ocelli. We conclude that the movements observed in O. sinenisis are an indirect result of active muilage secretion through the labiate process. It has been suggested that the raphe may have evolved from the labiate process; our conclusion, therefore, has phylogenetic implications, suggesting a functional as well as a morphological relationship between the two valve structures.  相似文献   

8.
Spirogyra and Closterium exhibit active motility. This motility is associated with the secretion of pectic mucilage from the cells. The gliding of these cells is not directed toward light but photosynthesis is the energy source for it. The secretion of mucilage causes older Closterium cultures to become thick gelatinous clusters. Spirogyra filaments when undisturbed grow to form thick multistranded rings. This growth pattern might result from the tendency of the filaments to rotate on their long axis.  相似文献   

9.
We quantified the structural changes accompanying cellular differentiation in root caps of Zea mays cv. Ageotropic to determine the developmental basis for the nongraviresponsiveness of their primary roots. Cells of the calyptrogen and columella of primary roots of the ageotropic mutant have structures indistinguishable from those of caps of primary roots of Z. mays cv. Kys the graviresponsive, wild-type parent of Z. mays cv. Ageotropic. However, the relative volumes of dictyosomes, dictyosome-derived vesicles and starch in the outermost peripheral cells of wild-type roots were significantly lower than were those in peripheral cells of mutant roots. This corresponds to a dramatic accumulation of starch and mucilage-filled vesicles in peripheral cells of mutant roots. Cellular differentiation in root caps of graviresponsive seminal roots of the Ageotropic mutant resembled that of primary and seminal roots of the wild-type cultivar, and differed significantly from that of primary roots of the mutant. We conclude that the mutation that blocks secretion of mucilage from peripheral cells of Ageotropic roots: (1) expresses itself late in cellular differentiation in root caps; (2) is expressed only in primary (but not seminal) roots of the Ageotropic mutant; and (3) is consistent with malfunctioning dictyosomes and dictyosome-derived vesicles being the cellular basis for agravitropism of primary roots of this mutant.  相似文献   

10.
The fusion cell in Asterocolax gardneri Setch, is a large, multinucleate, irregularly-shaped cell resulting from cytoplasmic fusions of haploid and diploid cells. Subsequent enlargement takes place by incorporating adjacent gonimoblast cells. The resultant cell consists of two parts—a central portion of isolated cytoplasm, surrounded by an electron dense cytoplasmic barrier, and the main component of the fusion cell cytoplasm surrounding the isolated cytoplasm. The fusion cell contains many nuclei, large quantities of floridean starch, endoplasmic reticulum, and vesicles, but few mitochondria, plastids and dictyosomes. The endoplasmic reticulum forms vesicles that apparently secrete large quantities of extracellular mucilage which surrounds the entire carposporophyte. The isolated cytoplasm also is multinucleate but lacks starch and a plasma membrane. Few plastids, ribosomes and mitochondria are found in this cytoplasm. However, numerous endoplasmic reticulum cisternae occur near the cytoplasmic barrier and they appear to secrete material for the barrier. In mature carposporophytes, all organelles in the isolated cytoplasm have degenerated.  相似文献   

11.
Summary The stigmatic surface of the orchid Dendrobium speciosum is a cup containing detached cells suspended in a mainly carbohydrate mucilage. The fine structure of the detached cells and their organelles is indicative of secretory cells. The cells contain numerous mitochondria with well-developed cristae, dictyosomes containing extensive cisternae, an extensive network of rough and smooth endoplasmic reticulum and free polysomes throughout. There are many amyloplasts in the vicinity of the nucleus. Vesicles are seen arising from the dictyosomes and endoplasmic reticulum. The plasmalemma is undulating, and vesicles can be seen in its vicinity, giving the typical appearance of a granulocrine secretory system. Cetylpyridinium chloride (CPC) fixation to immobilise acidic carbohydrates detected a highly electron-opaque layer surrounding each cell and globules dispersed through the cell wall. The walls of the detached cells show irregular surface projections which are the remains of pitfields. Biochemical analysis showed that carbohydrates and arabinogalactan proteins are major components of the mucilage.  相似文献   

12.
Cytokinins and gibberellins are able to strongly influence the development of “leaf” primordia in the cactus Opuntia polyacantha. Under the influence of cytokinin, the primordia produced by cultured axillary bud apical meristems develop as normal, photosynthetic leaves, being composed of regular epidermal cells, guard cells, mesophyll and mucilage cells as well as vascular tissue. Under the influence of gibberellic acid (GA), the primordia develop as cactus spines, composed of thick-walled epidermal and fiber cells. Guard cells, vascular tissue and parenchyma do not occur. Thus GA is able to redirect leaf morphogenesis in O. polyacantha far more completely than has been reported for other plants. The mitotic activity of the primordia that will develop into spines is significantly higher (at the 5 % level) than the mitotic activity of the primordia that will develop into leaves. This is interpreted to indicate that the primordia are either leaf primordia or spine primordia from a very early age, and possibly are never uncommitted or undetermined primordia, as has been suggested for fern leaf primordia.  相似文献   

13.
The subcellular location of soluble calcium in parenchymatousand mucilage cells of Opuntia ficus-indica was determined histochemically.Soluble calcium was observed in crystal chambers containingcalcium oxalate on the membrane of the vesicles. Calcium wasalso present in the plasmalemma, in plasmodesmata, in cell walls,in mitochondria and in the vacuoles. Especially marked was thepresence of soluble calcium in vesicles free or fused with theplasmalemma. Little free calcium was observed in other cellcompartments. In the calcium economy of tissues the location of soluble calciumand the transport of calcium to and from mucilage cells to parenchymatouscells and calcium oxalate idioblasts will play a role. Chelationof calcium by mucilage or oxalate, which depends on pH, ionicstrength, etc., will be important in this respect. Opuntia ficus-indica, calcium oxalate, mucilage cells, transport of calcium  相似文献   

14.
Cellular and tissue volumes were measured in caps of primary roots of Zea mays. There is an 850% increase in cellular volume as cellular function changes from that of being meristematic (i.e., calyptrogen cells) to graviperception (i.e., columella cells), and a 22% increase in cellular volume during the functional transition from graviperception to the production and secretion of mucilage. Cellular volume does not change significantly after cells cease mucilage production and are sloughed from the cap. Root caps of Z. mays allocate 7.5% of their volume for regeneration, 14.9% for graviperception, 24.3% for the transition of function from graviperception to mucilage production and secretion, and 38.7% for the production and secretion of mucilage. The remaining 14.5% of the cap volume is comprised of cells being sloughed from the cap.  相似文献   

15.
As the ovule of Plantago ovata matures into a seed its epidermal cells are transformed from undifferentiated parenchyma to thin-walled containers of almost pure mucilage. During this process the volume of the cells increases 60–80 fold, and the protoplast degenerates to a remnant. Rapid cell expansion begins with pollination and is accompanied by an increase in the size of the nucleus and nucleolus, a change in the random arrangement of ribosomes, a decrease in the thickness of cell walls, and synthesis of starch. Deposition of mucilage inside vacuoles and between the plasma membrane and cell wall accompanies a marked increase in the number and size of Golgi vesicles. Histochemical evidence using the thiocarbohydrazide-osmium vapor method shows polysaccharide to be present within Golgi vesicles while they are still attached to the Golgi apparatus. Mucilage deposition is associated with further cell expansion, separation of the protoplast from the cell wall, fusion of vacuoles and extra protoplasmic space, and the disappearance of starch.  相似文献   

16.
Pyramimonas mucifera sp. nov., a punctate species of the genus, is unusual both behaviorally and at the fine structural level. It forms two distinct populations in culture, one benthic and one planktonic. Planktonic forms are more conventional for the genus, but benthic forms are found in loosely packed mucilage, have flagellar rather than ciliary beating of the flagella, and display a higher degree of metaboly. Ultrastructurally this species is unusual in that it has a unique scale complement and the cells contain numerous muciferous vesicles, leaving only small pockets of cytoplasm containing the usual organelles. This species has a 3–1 type flagellar apparatus but has an additional fibrillar band, a 4–3-2–3 microtubular root system and a flexible synistosome. The discovery of a mucilage-producing species of Pyramimonas draws attention to possible links with other prasinophytes (Halosphaera) and green algae of questionable affiliation (Oltmannsiellopsis and Hafniomonas). It also provides a model of the primitive pyramimonad.  相似文献   

17.
The ultrastructure of carposporophyte development is described for the red alga Gloiosiphonia verticillaris Farl. The auxiliary cell produces gonimoblast initials, which divide to produce two types of gonimoblast cells—the nondividing vacuolate cells and terminal generative gonimoblast cells. The generative gonimoblast cells form clusters of carpospore initials, which eventually differentiate into carpospores. After gonimoblast filaments are formed, the auxiliary cell undergoes autolysis, causing degeneration of septal plugs between the auxiliary cell and adjacent cells, thus forming a fusion cell. Since this cell lacks starch and appears degenerate throughout carposporophyte development, a nutritive function cannot be ascribed to the fusion cell. Carpospore differentiation is simple and proceeds through three developmental stages. Young carpospores structurally resemble gonimoblast cells, because they contain undeveloped plastids, large quantities of floridean starch, and are surrounded by extensive mucilage instead of a distinct wall. In addition, dictyosomes form and begin to produce vesicles with fibrous contents representing carpospore wall material. During the intermediate stage, dictyosomes continue to produce vesicles that contribute additional carpospore wall material, thereby compressing the mucilage and creating a darker-staining layer outside the carpospore wall. Plastids form internal thylakoids by invaginations of the inner membrane of the peripheral thylakoid. The endoplasmic reticulum forms large granular vacuoles that appear to be degraded during subsequent stages of development. Mature carpospores form cored vesicles. They also contain mature chloroplasts, large amounts of floridean starch, and occasionally granular vacuoles. During this stage, interconnecting carpospore-carpospore and carpospore-gonimoblast cell septal plugs begin to undergo degeneration. This process may be mediated by tubular structures.  相似文献   

18.
In order to determine the involvement of glucose-6-phosphatasein mucilage secretion by root cap cells, we have cytochemicallylocalized the enzyme in columella and peripheral cells of rootcaps of Zea mays. Glucose-6-phosphatase is associated with theplasmalemma and cell wall of columella cells. As columella cellsdifferentiate into peripheral cells and begin to produce andsecrete mucilage, glucose-6-phosphatase staining intensifiesand becomes associated with the mucilage and, to a lesser extent,the cell wall. Cells being sloughed from the cap are characterizedby glucose-6-phosphatase staining being associated with thevacuole and plasmalemma. These changes in enzyme localizationduring cellular differentiation in root caps suggest that glucose-6-phosphataseis involved in the production and/or secretion of mucilage byperipheral cells of Z. mays. Zea mays, corn, glucose-6-phosphatase, columella cell, peripheral cell, mucilage, secretion, cytochemistry  相似文献   

19.
Die Morphologie der Schleimsekretion im Fruchtknoten vonAptenia cordifolia   总被引:2,自引:1,他引:1  
Udo Kristen 《Protoplasma》1976,89(3-4):221-233
Zusammenfassung Der Fruchtknoten vonAptenia cordifolia enthÄlt wÄhrend der Samenentwicklung einen proteinreichen Polysaccharidschleim. Verschieden alte schleimproduzierende Placentarpapillen werden einer elektronenmikroskopischen Analyse unterzogen. Kurz vor dem Einsetzen der Schleimproduktion ist das rauhe ER noch spÄrlich entwickelt. Der Golgi-Apparat ist unauffÄllig und wenig aktiv. Zu Beginn der Schleimbildung sind als hauptsÄchliche Strukturkomponenten hypersekretorische Dictyosomen und ER-umschlossene Vakuolen (storage vesicles) zu beobachten. Es wird angenommen, da\ diese Komplexe aus rauhem ER und vermutlich mitèinander verschmolzenen Golgi-Vesikeln die charakteristischen Synthese-Einheiten für den Polysaccharid-Protein-Schleim darstellen, da sie nachweislich neben Polysacchariden auch Proteine enthalten. Membranfusionen zwischen Vesikeln und dem Plasmalemma deuten auf Exocytose-Prozesse unter Beteiligung des Golgi-Apparates hin. Daneben wird eine holocrine Ausscheidung des in den storage vesicles zunÄchst gespeicherten Polysaccharid-Protein-Schleimes bei Degeneration des Protoplasten vermutet.
Morphology of slime secretion in the seed vessels ofAptenia cordifolia
Summary During seed development the gynaeceum ofAptenia cordifolia produces a mucilage rich in carbohydrates and protein. The mucilage-producing placentary papillae are analyzed in different developmental stages by electron microscopy. Just before mucilage production is started, the rough ER occurs but sparsely. At that time the dictyosomes are inconspicuous and of low activity. When mucilage production commences, one can observe hypersecretory dictyosomes and ER-ensheathed vacuoles (storage vesicles) as the main structural components. It is suggested that the complexes of rough ER and probably fused Golgi vesicles are the synthetizing units of the carbohydrate protein mucilage, since in these complexes both components can be identified cytochemically. Fusion sites of plasmalemma and vesicles indicate processes of exocytosis-probably involving the Golgi apparatus. In addition, a holocrine excretion of the mucilage initially enclosed in the storage vesicles via degeneration of the protoplast is assumed.
  相似文献   

20.
McFarlane HE  Young RE  Wasteneys GO  Samuels AL 《Planta》2008,227(6):1363-1375
During their differentiation Arabidopsis thaliana seed coat cells undergo a brief but intense period of secretory activity that leads to dramatic morphological changes. Pectic mucilage is secreted to one domain of the plasma membrane and accumulates under the primary cell wall in a ring-shaped moat around an anticlinal cytoplasmic column. Using cryofixation/transmission electron microscopy and immunofluorescence, the cytoskeletal architecture of seed coat cells was explored, with emphasis on its organization, function and the large amount of pectin secretion at 7 days post-anthesis. The specific domain of the plasma membrane where mucilage secretion is targeted was lined by abundant cortical microtubules while the rest of the cortical cytoplasm contained few microtubules. Actin microfilaments, in contrast, were evenly distributed around the cell. Disruption of the microtubules in the temperature-sensitive mor1-1 mutant affected the eventual release of mucilage from mature seeds but did not appear to alter the targeted secretion of vesicles to the mucilage pocket, the shape of seed coat cells or their secondary cell wall deposition. The concentration of cortical microtubules at the site of high vesicle secretion in the seed coat may utilize the same mechanisms required for the formation of preprophase bands or the bands of microtubules associated with spiral secondary cell wall thickening during protoxylem development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号