首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an apple orchard at Armidale, the Northern Tablelands of NSW, population sex ratios ofAphelinus mali (Haldeman), an endoparasitoid of the woolly apple aphid,Eriosoma lanigerum (Hausmann) varied from 0.51 (proportion of males) at low host densities to female-biased at high host densities (proportion of males ranged from 0.35–0.39). This shift in sex ratio seems to be caused by the differences in allocation of sons and daughters to hosts of different sizes. In the fieldA. mali parasitizes all life stages (four nymphal instars and adult) of the woolly aphid upon encountering. According to Hughes'(1979) optimal diet model, such general host acceptance seems to be the best strategy. However, it allows the host nymphs or adults to continue to develop or reproduce until about to mummify (pupate). No mortality was observed when first or second-instar hosts were parasitized in the laboratory. Field collected small mummified hosts yielded male-biased sex ratios whereas large mummified hosts produced mainly females. In the laboratory, progeny from smaller hosts (first to third-instars) produced sex ratios which were not significantly different from 0.5 whereas progeny from larger hosts (third and fourth-instars) produced female-biased sex ratio. During winter (June–August) and early spring (September–October) when the host populations in the orchard were predominantly nymphs, the parasitoid tended to allocate equal resources to male and female offspring. In contrast, at peak population densities in summer and autumn (December–May) when larger hosts were available, the sex ratios were female-biased. The host size ofE. lanigerum andA. mali is, therefore, an important component in the dynamics of host-parasitoid interactions.  相似文献   

2.
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.Subject terms: Evolutionary genetics, Evolutionary ecology, Parasitology  相似文献   

3.
Abstract.
  • 1 In cassava fields in Africa, population sex ratios of Epidinocarsis fopezi vaned from 0.44 (males to total parasitoids) at low host densities to highly male-biased ratios of 0.70 at high host densities.
  • 2 This variability is caused by the difference in allocation of sons and daughters to hosts of different sizes, through the following mechanisms: (a) small, i.e. second instar, hosts are mainly used for the production of male offspring, whereas in large, i.e. third instar, hosts a variable, female-biased sex ratio is produced; (b) E.fopezi does not selectively oviposit into large hosts but always accepts both small and large hosts for oviposition upon encountering; (c) in the field, this parasitoid is time-limited, and not egg-limited. On the basis of an optimal diet model, such general host acceptance is shown to be the best strategy.
  • 3 Thus, sex ratio increases with host density for three reasons: the proportion of small hosts encountered in the field increases with increasing host density, small hosts are used for male production, and hosts are always accepted when encountered.
  相似文献   

4.
The ability of the gregarious larval endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) to adjust progeny sex ratio and clutch size was investigated. The sex ratios (proportion of males) of field clusters were diverse, but many (70%) were female-biased. Nearly 10% yielded males only, suggesting a low percentage of unmated females in the field. In over half of the clusters containing females, the sex ratio was below 0.3. Superparasitism was common in the field, and females were believed to increase progeny sex ratio when attacking previously-parasitized hosts. However, in a single oviposition bout, sex allocation was not precisely controlled both in the field and laboratory. In the laboratory, the number of eggs laid in a day tended to decrease with increasing female age. For females which were offered two hosts per day and for those offered three hosts per day, this value became nearly the same several days after the start of oviposition. The total number of hosts which a female could parasitize during her lifetime was often less than 40. Some of the old females which attacked more than 40 hosts produced male-biased clutches; this was due to sperm depletion, because sperm remained viable throughout a female's lifetime. The amount of sperm used in a single oviposition bout seemed fixed and was not dependent on the number of eggs laid. Females with much oviposition experience did not produce new eggs to compensate for deposited eggs, and the efficiency of egg use (deposited eggs/total eggs) was more than 80%.  相似文献   

5.
Various aspects were studied of the brood size and sex allocation strategies, and of size-fitness relationships in Parallorhogas pyralophagus (Marsh), a gregarious ectoparasitoid of Eoreuma loftini Dyar. Brood size was significantly correlated with host size; larger hosts were allocated larger broods. Brood sex ratios were fixed precisely at 1 male per 4 females, and eggs were likely to be deposited in that order; differential mortality did not contribute to this precise sex ratio. The sex allocation strategy of P. pyralophagus is likely to conform to strict, i.e. single foundress, local mate competition. Adoption of this strategy is probably influenced by a limited insemination capacity of males; a smaller proportion of females (0.09 vs. 0.21) remained virgin in broods with precise or higher sex ratios (> or = 0.20 males) relative to broods with lower than precise sex ratios (< 0.20 males). Moreover, all females were inseminated in most broods (60%) with precise or higher sex ratios, whereas this did not occur in broods with lower than precise sex ratios. The hypothesized occurrence of strict local mate competition in P. pyralophagus was supported also by observations that: (i) offspring brood sex ratios were independent of maternal brood sex ratios and number of parental females concurrently allocating offspring to a group of hosts, and; (ii) the rate of superparasitism under no-choice conditions was low (approximately 20%), suggesting that rates of outbreeding in the field are low. Other results suggested that fitness in P. pyralophagus was correlated with adult size; longevity and reproductive capacity both increased with adult size in males and females. However, adult size may be more important for females than for males because the differences in reproductive capacity between the largest and smallest individuals was up to 7.3 times greater in females versus < 2 times in males.  相似文献   

6.
Abstract. 1. Spulungiu endius Walker is a solitary parasitoid of house fly puparia.
2. The sex and size of S.endius was not related to host size.
3. In the laboratory the mean sex ratio of all offspring of nine groups, each comprising twenty females, was consistently female-biased (x = 83.5%, range 79–87%). The sex ratio in the field was less female-biased and showed greater fluctuation (61–75%). This may be a consequence of females laying male eggs before mating, some females remaining unmated, possible shorter adult life expectancy in the field than in the laboratory, and, perhaps, the presence of conspecific females.
4. The sex ratio of offspring of individual females varied from 66% to 100% females, and males were deposited early in the oviposition sequence.
5. Although a large number of fly puparia died before adult flies or parasitoids emerged (64.5%; n = 5874), there was no differential mortality of either sex.
6. Our results fit no general sex ratio hypothesis and we conclude that (i) the genetic nature of sex ratios in these insects needs careful examination, and (ii) the prevalence of female-biased sex ratios in solitary parasitoids needs investigation.  相似文献   

7.
Abstract.
  • 1 Female eggs of Coccophagus atratus are deposited within the haemolymph of coccoid scale insects. Male eggs are deposited on to late larval and prepupal stages of parasitoids of scale insects, including conspecifics.
  • 2 When presented with either one host type or a combination of both host types, female C.atratus deposit all their available eggs, assigning the appropriate sex egg to each host encountered. Brood sizes are not adjusted for different combinations of hosts.
  • 3 Behavioural observations show that females do not move away from patches of hosts until all their eggs are laid, regardless of the host type.
  • 4 Brood sex ratios varied with changes in the relative availability of hosts for males and hosts for females. When both host-types were present in equal numbers, male biased sex ratios resulted (mean ±SEM =0.71 ± 0.009) and when 70% of hosts provided were suitable for female eggs, mostly female-biased sex ratios resulted (mean ± SEM = 0.37±0.01).
  • 5 Our results do not fit predictions based on the assumption that a sex ratio of 0.5 should be expected in C.atratus. Observed sex ratios indicate that the unusual life histories of these parasitoids need to be taken into account in explanations of their sex ratios.
  相似文献   

8.
Sex ratio theory allows unparalleled opportunities for testing how well animal behavior can be predicted by evolutionary theory. For example, Hamilton's theory of local mate competition (LMC) is well understood and can explain variation in sex allocation across numerous species. This allows more specific predictions to be developed and tested. Here we extend LMC theory to a situation that will be common in a range of species: asymmetrical LMC. Asymmetrical LMC occurs when females lay eggs on a patch asynchronously and male offspring do not disperse, leading to relatively weaker LMC for males emerging from later broods. Varying levels of LMC then lead to varying optimal sex ratios for females, depending on when and where they oviposit. We confirm the assumptions of our theory using the wasp Nasonia vitripennis and then test our predictions. We show that females adjust their offspring sex ratios in the directions predicted, laying different sex ratios on different hosts within a patch. Specifically, there was a less female-biased sex ratio when ovipositing on an unparasitized host if another host on the patch had previously been parasitized and a less female-biased sex ratio on parasitized hosts if females also oviposited on an unparasitized host.  相似文献   

9.
The solitary endoparasitoid Aenasius vexans Kerrich (Hymenoptera: Encyrtidae) is used for augmentative releases against the cassava mealybug, Phenacoccus herreni Cox & Williams (Sternorrhyncha: Pseudococcidae), an important pest on cassava in South America. In light of the need for large numbers of high quality females, experiments were conducted on host stage suitability and sex allocation. In choice and no-choice experiments, individual female wasps were offered second and third instar, as well as adult, hosts. During the first five days after emergence, the wasps showed a steady increase in the number of hosts they successfully parasitised per day, but the respective secondary sex ratio for each instar remained constant. Parasitism was highest for third instar hosts in no-choice tests, while in choice tests parasitism was highest in both third instars and adults. The later the developmental stage of the host at oviposition, the faster the parasitoids developed and emerged, and for each host stage, the development time of males was shorter than for females. The sex ratio of the wasps emerging from hosts that were parasitised as second instars was strongly male-biased, while the apparently preferred later stages yielded significantly more females than males. Female and male A. vexans emerging from hosts parasitised at the third instar were significantly larger than for the other stages. This may explain the preference for the third instar as well as the female-biased sex ratio, as size is usually positively correlated with higher fitness, especially in females. The results suggest that third instar hosts are the most suitable for rearing high numbers of large females.  相似文献   

10.
11.
Taber D. Allison 《Oecologia》1992,89(2):223-228
Summary Browsed Canada yew (Taxus canadensis) populations have a higher proportion of males and a lower proportion of monoecious plants than unbrowsed yew populations. The proportion of monoecious plants increases with time following protection from browsing suggesting that deer browsing causes male-biased sex expression in Canada yew. In contrast, results from comparing browsed and unbrowsed populations, exclosure studies, and browse simulation experiments indicate that strobilus ratios and phenotypic gender of browsed yews may be female-biased. In part, these results correspond to the influence of size on sex expression in Canada yew; small yews tend to be male, but if monoecious, have female-biased strobilus ratios. Large yews are monoecious, but have male-biased strobilus ratios. There is, however, no consistent relationship between size and gender in Canada yew, suggesting that in some circumstances, yews shift allocation to female function in response to browsing.  相似文献   

12.
Sex ratios can influence mating behaviour, population dynamics and evolutionary trajectories; yet the causes of natural sex ratio variation are often uncertain. Although secondary (birth) sex ratios in guppies (Poecilia reticulata) are typically 1:1, we recorded female-biased tertiary (adult) sex ratios in about half of our 48 samples and male-biased sex ratios in none of them. This pattern implies that some populations experience male-biased mortality, perhaps owing to variation in predation or resource limitation. We assessed the effects of predation and/or inter-specific resource competition (intraguild predation) by measuring the local catch-per-unit-effort (CPUE) of species (Rivulus killifish and Macrobrachium prawns) that may differentially prey on male guppies. We assessed the effects of resource levels by measuring canopy openness and algal biomass (chlorophyll a concentration). We found that guppy sex ratios were increasingly female-biased with increasing CPUE of Macrobrachium, and perhaps also Rivulus, and with decreasing canopy openness. We also found an interaction between predators and resource levels in that the effect of canopy openness was greatest when Macrobrachium CPUE was highest. Our study thus also reveals the value of simultaneously testing multiple environmental factors that may drive tertiary sex ratio variation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
1. Parasitic Hymenoptera reproduce by arrhenotokous parthenogenesis, and females of these species are able to control their progeny sex ratios. In structured populations of parasitic Hymenoptera, primary sex ratios are often highly biased toward females. However, sex ratio can be adjusted to the quality of encountered patches or hosts or be modified by differential developmental mortality.
2. In this paper, the effects were evaluated of the quality of encountered hosts and developmental mortality on the sex ratio in Anaphes victus , a solitary egg parasitoid whose first instar larvae present a sexual dimorphism and where superparasitism is regulated by larval fights between first instar larvae.
3. The results showed that a female-biased sex ratio is allocated to unparasitized hosts. In the presence of parasitized hosts, the second (superparasitizing) female produced a significantly higher sex ratio than the first female but the tertiary sex ratio (sex ratio at emergence) was not significantly different from the sex ratio produced with unparasitized hosts. The increase in the primary sex ratio produced by the second female was mostly compensated by the higher mortality of male larvae.  相似文献   

14.
Biased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster, using experimental evolution. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved under protein restriction. By contrast, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success. Males that evolved under protein restriction were relatively poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.  相似文献   

15.
We tested several assumptions and predictions of host-quality-dependent sex allocation theory (Charnov et al. 1981) with data obtained for the parasitoid Metaphycus stanleyi Compere on its host, brown soft scale (Coccus hesperidum L.), in a California citrus grove and in the laboratory. Scales ceased growing after parasitization by M.?stanleyi. Thus, M. stanleyi may gauge host quality (=size) at oviposition. Host size positively influenced adult parasitoid size, and parasitoid size in turn influenced adult longevity of M. stanleyi. However, parasitoid fitness gains with host size and adult size were similar in males versus females. Sex allocation to individual hosts by M. stanleyi depended on host size; females consistently emerged from larger hosts than males. Host size was important in a relative sense; the mean host sizes of females versus males, and of solitary versus gregarious parasitoids varied with the available host size distribution. The offspring sex ratio of M. stanleyi reflected the available host size distribution; the sex ratio of emerging parasitoids varied with the available host size distribution. We did not detect a “critical host size” below which males emerged, and above which females emerged; rather, only females emerged from hosts in the upper size range, and a variable ratio of males and females emerged from hosts in the lower size range. We conclude that the sex ratio of field populations of M.?stanleyi is driven largely by the available size distribution of C. hesperidum. In addition, we tested predictions resulting from theoretical analyses of sex allocation in autoparasitoids with data obtained on Coccophagus semicircularis (Förster) parasitizing brown soft scale in the field. The sex ratio of C. semicircularis was consistently and strongly female biased (ca. 90% females). Based on available theoretical analyses, we suggest that this sex ratio pattern may have resulted from a very low encounter rate of secondary hosts coupled with a strong time limitation in C. semicircularis females. This explanation was the most plausible given constraints stemming from the detection of secondary hosts, their variable location within primary hosts, and their handling times. Finally, the size of hosts which yielded single versus multiple parasitoids, and the sizes of these parasitoids, were compared. These comparisons suggested that: (1) M. stanleyi females gauge host sizes precisely, and in terms of female offspring; thus a fitness penalty is not incurred by females which share a host, while males benefit from sharing a host, and; (2) instances where multiple C. semicircularis emerged from a single host were probably the result of parasitism by different females, or during different encounters by a single female.  相似文献   

16.
Despite extensive research on mechanisms generating biases in sex ratios, the capacity of natural enemies to shift or further skew operational sex ratios following sex allocation and parental care remains largely unstudied in natural populations. Male cocoons of the sawfly Neodiprion abietis (Hymenoptera: Diprionidae) are consistently smaller than those of females, with very little overlap, and thus, we were able to use cocoon size to sex cocoons. We studied three consecutive cohorts of N. abietis in six forest stands to detect cocoon volume‐associated biases in the attack of predators, pathogens, and parasitoids and examine how the combined effect of natural enemies shapes the realized operational sex ratio. Neodiprion abietis mortality during the cocoon stage was sex‐biased, being 1.6 times greater for males than females. Greater net mortality in males occurred because male‐biased mortality caused by a pteromalid parasitic wasp and a baculovirus was greater and more skewed than female‐biased mortality caused by ichneumonid parasitic wasps. Variation in the susceptibility of each sex to each family of parasitoids was associated with differences in size and life histories of male and female hosts. A simulation based on the data indicated that shifts in the nature of differential mortality have different effects on the sex ratio and fitness of survivors. Because previous work has indicated that reduced host plant foliage quality induces female‐biased mortality in this species, bottom‐up and top‐down factors acting on populations can affect operational sex ratios in similar or opposite ways. Shifts in ecological conditions therefore have the potential to alter progeny fitness and produce extreme sex ratio skews, even in the absence of unbalanced sex allocation. This would limit the capacity of females to anticipate the operational sex ratio and reliably predict the reproductive success of each gender at sex allocation.  相似文献   

17.
Overproduction of males in mass rearing of parasitic Hymenoptera contributes to higher costs for biological control because only females directly kill pests. We present a technique, based on manipulating host composition, to generate less male‐biased sex ratios in parasitoid species that adjust their sex allocation in response to relative host size. Our system consisted of chrysanthemum, Dendranthema grandiflora Tzvelev var. ‘Miramar’; a leafminer, Liriomyza langei Frick (Diptera: Agromyzidae); and a commercially available parasitoid, Diglyphus isaea (Walker) (Hymenoptera: Eulophidae). We compared the offspring sex ratios of D. isaea females presented with different compositions of L. langei larvae on chrysanthemum. Presenting individual females with only large hosts increased mean sex ratio from 32 to 67% male over 2 days. However, presenting individual females with progressively larger hosts over 1 or 2 days reduced mean sex ratio from 90 to 100% male to less than 30% male. Groups of females produced sex ratios around 58% male if presented with both plants infested by only small hosts and plants infested by only large hosts. In comparison, groups of females produced sex ratios around 48% male if presented with plants infested by both small hosts and large hosts. We compared the use of both small hosts and large hosts to only large hosts for simulated mass rearing of wasps over 8 weeks. Using both small hosts and large hosts produced similar numbers of wasps as using only large hosts, but reduced mean sex ratio of weekly cohorts from 66% male to 56% male. The two techniques produced females of similar size, but using both large hosts and small hosts produced slightly smaller males than using only large hosts. The use of both small hosts and large hosts for mass rearing of D. isaea could reduce actual costs of females by 23%.  相似文献   

18.
 In haplodiploid organisms such as parasitic wasps, substantial oviposition by females without sperm is predicted to cause mated females to bias their offspring sex ratios towards daughters. The effect of the production of sons by unmated and sperm-depleted (constrained) females on sex allocation by mated females was studied in two populations of the parasitic wasp Bracon hebetor over 3 years. B. hebetor females who depleted their sperm reserves from prior matings rarely remated and became constrained to produce only sons. Constrained females readily oviposited and produced clutches similar in size to those produced by mated females. Although the fraction of constrained females in the population varied considerably between sites and sampling dates, it was usually high enough to favor the production of female-biased sex ratios by mated females. Mated females consistently produced female-biased sex ratios. However, we found no evidence that the sex ratios produced by mated females from the field shifted in relation to the proportion of constrained females in the population. Females held with males or held in isolation also produced female-biased sex ratios. These findings suggest that, in B. hebetor, mated females produce sex ratios that reflect the average fraction of constrained females over evolutionary time. Received: 21 June 1996 / Accepted: 27 August 1996  相似文献   

19.
Unbiased estimates of sex ratios that reflect local abundance of adult insects are practically difficult to obtain because many gender‐specific behavioural adaptations differentially influence the catchability of males and females in commonly applied sampling procedures. Historic data on outbreak populations of spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae), the major pest of conifers in Nearctic boreal forests, include dozens of sex ratio observations for 10 different sampling procedures; these data illustrate the importance of understanding the reproductive ecology of adults to contextualize sex ratio assessments. Sex ratios of resident adults (assessed by rearing field‐collected pupae to adulthood or fogging host trees with insecticide) were not different from 1:1. Sex ratios of in‐flight adults collected using Malaise traps or light traps deployed in tree canopies were consistently male‐biased, which presumably reflects the higher level of flight activity for males relative to females. Sex ratios of moths captured outside the forest canopy (presumed migrants), in contrast, were consistently female‐biased, a trend which is expected because females seeking oviposition sites are more likely to undergo migration than are males. The sex ratio among adults that died from natural causes (collected on drop trays) was not distinguishable from 1:1. In pre‐outbreak (endemic) populations, sex ratios estimated by light trapping were much more strongly male‐biased than in outbreak populations. This surprising result should, however, be interpreted with caution because little is known of reproductive ecology in endemic budworm populations.  相似文献   

20.
The sex ratio is an important parameter which characterizes the state and dynamics of natural populations of animals. Although ixodid ticks are specialized ectoparasites, most species are bisexual and are characterized by a 1:1 sex ratio for their progeny. In natural populations and even in laboratory colonies, biased sex ratios are often observed. Ixodes rubicundus, the Karoo paralysis tick, parasitizes domestic stock and wild ungulates in South Africa. Adults quest from vegetation, can mate off or on the host and males are seldom parasitic. We hypothesized that the sex ratio for I. rubicundus would be 1:1 when observed directly in the progeny but that it would be strongly biased towards females in samples of parasitic adults. The results mostly supported the hypothesis but it was also shown that unexplained and unpredictable variations can occur. On hosts, females dominated strongly, except on adult angora goats where the sex ratio was biased in favour of the males. This disparity may be related to a greater retention of males in the coarse, curly hair of angora goats compared to the other hosts. Monthly variations in the sex ratios of the tick on hosts are believed to be related to the large fluctuations in sex ratios of questing ticks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号