首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Outcrossing rates were estimated in both natural and experimental populations of Scabiosa columbaria, a self-compatible, entomophilous, gynodioecious, protandrous perennial. In natural populations, estimates of the outcrossing rate in hermaphrodites were near to one and ranged from 0.84 ± 0.07 to 1.12 ± 0.11. The effect of plant density on outcrossing rates was studied in two experimental populations of 27 individuals. Contrary to expectation the estimates of the outcrossing rate in hermaphrodites were about 100% for both densities. However, in the sparse population, the fraction of developed seeds of plants used to estimate outcrossing rates was significantly lower than of plants in the dense population (0.41 ± 0.06 and 0.68 ± 0.08, respectively). Artificial pollinations of these plants in the greenhouse showed that the fraction of developed seeds was 0.60 ± 0.01 and 0.83 ± 0.05 after self- and cross-pollination, respectively. The combined results suggested that the differential success of self- and cross-pollination might have caused equalization of the outcrossing rates in the experimental populations, despite different plant densities. The implications of the results for conservation biology are discussed.  相似文献   

2.
Summary Outcrossing rates were estimated in three populations of the gynodioecious species Plantago coronopus by means of electrophoresis of adult plants and their natural progenies. A multilocus estimation procedure was used. Heterogeneity among the pollen-pool allele frequencies did not exist either in space of in time. Differences between populations in mean outcrossing rates were large (range: 0.34–0.93), probably caused by differences in densities of flowering plants. In addition, there was considerable variability between individuals, which was at least partly caused by the presence of male sterility. Population density may, via its influence on outcrossing rates, be a factor influencing the maintenance of male sterile plants in the population. The level of outcrossing in hermaphrodites was not low enough to explain the maintenance of male steriles. Outcrossing rates in two populations, established via progeny analysis, were much lower than calculated with the fixation index, possibly indicating heterozygote advantage in these natural populations.Grassland Species Research Group Publication no. 134  相似文献   

3.
Although in gynodioecious populations male steriles require a fecundity advantage to compensate for their gametic disadvantage, southern Spanish populations of the long-lived shrub Daphne laureola do not show any fecundity advantage over hermaphrodites in terms of seed production and early seedling establishment. By using allozyme markers, we assess the mating system of this species in five populations differing in sex ratio, and infer levels of inbreeding depression over the whole life cycle by comparing the inbreeding coefficients at the seed and adult plant stages. Extremely low outcrossing rates (0.001相似文献   

4.
Summary A multilocus procedure was used to estimate outcrossing rates in ten roadside populations of Trifolium hirtum in California. Three groups of populations were studied: cultivars, hermaphroditic, and gynodioecious (sexually dimorphic) populations. The multilocus outcrossing rate (tm) varied from 0.05 to 0.43 among populations. Population level tm estimates were significantly correlated with the observed heterozygosity in gynodioecious populations but not in hermaphroditic populations. The outcrossing rate of hermaphrodites and females was estimated in three gynodioecious populations; the estimates of tm varied from 0.09 to 0.23 for hermaphrodites and from 0.73 to 0.80 for females. The distribution of outcrossing rates in gynodioecious populations is bimodal. Our results indicate that for the levels of selfing observed among hermaphrodites, inbreeding depression is likely to be a major factor in the maintenance of females in gynodioecious populations.  相似文献   

5.
Gynodioecious populations consist of separate hermaphroditic and female individuals. Females are at a selective disadvantage because they contribute genes to the next generation only through ovules, while hermaphrodites contribute genes through ovules and pollen. For females to be maintained in populations they must have some compensating selective advantage. The outcrossing hypothesis postulates that females are maintained because their progeny result from obligate outcrossing, whereas some of the progeny of hermaphrodites result from self-fertilization and are less fit because of inbreeding depression. If correct, the frequency of females should be positively correlated with selfing rates of hermaphrodites in populations. We found a strong positive correlation between female frequency and selfing rates of hermaphrodites (r = 0.91, P < 0.01) in eight gynodioecious populations of Hawaiian species of Bidens. Our results confirm that the obligate outcrossing of females is a major factor maintaining females in gynodioecious populations. However, the observed selfing rates are insufficient by themselves to account for the frequency of females in these populations.  相似文献   

6.
Trioecy is an uncommon sexual system in which males, females, and hermaphrodites co-occur as three clearly different gender classes. The evolutionary stability of trioecy is unclear, but would depend on factors such as hermaphroditic sex allocation and rates of outcrossing vs. selfing. Here, trioecious populations of Mercurialis annua are described for the first time. We examined the frequencies of females, males and hermaphrodites across ten natural populations and evaluated the association between the frequency of females and plant densities. Previous studies have shown that selfing rates in this species are density-dependent and are reduced in the presence of males, which produce substantially more pollen than hermaphrodites. Accordingly, we examined the evolutionary stability of trioecy using an experiment in which we (a) indirectly manipulated selfing rates by altering plant densities and the frequency of males in a fully factorial manner across 20 experimental plots and (b) examined the effect of these manipulations on the frequency of the three sex phenotypes in the next generation of plants. In the parental generation, we measured the seed and pollen allocations of hermaphrodites and compared them with allocations by unisexual plants. In natural populations, females occurred at higher frequencies in denser patches, a finding consistent with our expectations. Under our experimental conditions, however, no combination of plant densities and male frequencies was associated with increased frequencies of females. Our results suggest that the factors that regulate female frequencies in trioecious populations of M. annua are independent of those regulating male frequencies (density), and that the stable co-existence of all three sex phenotypes within populations is unlikely.  相似文献   

7.
We measured outcrossing rates of several North Carolina populations of the annual weed Datura stramonium including both natural populations and experimental populations in which we manipulated plant spatial arrangement. Because capsules of D. stramonium typically produce hundreds of seeds and we used an easily scored genetic marker for flower and hypocotyl color, we could measure outcrossing rates accurately for both individual plants and single flowers. The population-wide estimates of outcrossing rates were surprisingly low for a species with showy, entomophilous flowers and ranged from 1.9% in an experimental population with a “clumped” spatial arrangement to 8.5% in an experimental population with a “dispersed” arrangement. These low values were not produced by pollinator discrimination among flower color morphs, as determined by outcrossing measurements on test plants of different colors and by direct observations of pollinator behavior. For individual plants and single flowers in the experimental populations, variation in outcrossing rates was significantly affected by such population-wide characteristics as plant spatial arrangement and nightly fluctuations in total floral abundance. However, by far the most important factor was stigma position. Flowers with stigmas above the anthers had significantly higher outcrossing rates than did flowers with overlapping stigma and anthers. The strong effect of floral morphology suggests that the very low population-wide levels of outcrossing in D. stramonium may represent a persistent mixing mating system rather than a transition to complete selfing.  相似文献   

8.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

9.
Floral features related to the breeding system were studied for 11 species of Hawaiian Bidens. Protandry and male sterility promote outcrossing, while self-compatibility and geitonogamy contribute to inbreeding. The combination of these floral mechanisms results in a mixed mating system in all species studied. Outcrossing rates of 15 populations of these species ranged from 0.43 to 0.88, averaging 0.65. Apparent selling rates of females ranged from 0 to 0.25 in seven gynodioecious populations surveyed, suggesting that there is variation in the level of biparental inbreeding among populations. The presence of females increased the level of outcrossing by an average of 9% in gynodioecious populations. This study indicates that the efficiency of gynodioecy as an outcrossing mechanism largely depends on the current outcrossing rate of hermaphrodites, the frequency of females, and the extent of genetic substructuring in populations. On average, autogamy contributed 4%, geitonogamy contributed 24%, and consanguineous mating contributed 15% to the realized selfing rate (43%) in the hermaphrodites of these species.  相似文献   

10.
Summary Cytoplasmic male steriles occur regularly in wild populations of the annual crucifer Hirschfeldia incana Lagr.-Foss. in Israel. In these plants numbers of ovules per flower, numbers of seed per fruit, and total seed weights per plant are slightly higher than in the hermaphrodites with which they mate. Yet their frequencies in wild populations do not exceed 2–10 per cent. There are no signs of incipient dioecy. The species is self incompatible and no mechanisms to enforce outcrossing are needed. It is argued that in this and similar cases gynodioecy functions as a pollen saving measure. Precise pollen presentation in the flower renders some of the pollen redundant and facilitates its abolition in a sector of the population. It is possible that the enhanced seed fecundity of the pollenless sector stems from a greater availability of plant resources for seed production in the unisexual than in the bisexual seed parent.  相似文献   

11.
Androdioecy, coexistence of hermaphrodites and males, is an extremely rare breeding system in angiosperms. In the present study, Schizopepon bryoniaefolius (Cucurbitaceae) was confirmed to be functionally androdioecious based on observations of floral and pollen morphology and bagging experiments. Six out of the 11 studied populations consisted of only hermaphrodites, while the other five populations were androdioecious and the frequencies of males were consistently lower than those of hermaphrodites (5.5–28.3%). To understand the consequences of an androdioecious breeding system, genetic variation was estimated using four polymorphic allozyme loci. The degree of genetic differentiation among 11 populations was high (GST = 0.688). Inbreeding coefficients (FIS) for all loci significantly deviated from zero. In particular, the FIS values averaged across the polymorphic loci in hermaphrodite populations were close to unity, suggesting that hermaphrodites are predominantly selfing in the absence of males. A significant negative correlation was found between the frequencies of males and inbreeding coefficients, indicating that outcrossing rates depend on the population sex ratio.  相似文献   

12.

Background

Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of `reproductive assurance’ suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.

Results

We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance.

Conclusions

Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
  相似文献   

13.
We tested whether differences in ploidy level and previous exposure to herbivory can affect plant tolerance to herbivory. We conducted a common garden experiment with 12 populations of two ploidy levels of the perennial herb Cardamine pratensis (five populations of tetraploid ssp. pratensis and seven populations of octoploid ssp. paludosa). Earlier studies have shown that attack rates by the main herbivore, the orange tip butterfly Anthocharis cardamines, are lower in populations of octoploids than in populations of tetraploids, and vary among populations. In the common garden experiment, a combination of natural and artificial damage significantly reduced seed and flower production. We measured tolerance based on four plant-performance metrics: survival, growth, seed production and clonal reproduction. For three of these measurements, tolerance of damage did not differ between ploidy levels. For clonal reproduction, the octoploids had a higher tolerance than the tetraploids, although they experience lower herbivore attack rates in natural populations. Populations from sites with high levels of herbivory had higher tolerance, measured by seed production, than populations with low levels of herbivory. We did not detect any significant costs of tolerance. We conclude that high intensity of herbivory has selected for high tolerance measured by seed production in C. pratensis.  相似文献   

14.
The majority of plant species and many animals are hermaphrodites, with individuals expressing both female and male function. Although hermaphrodites can potentially reproduce by self‐fertilization, they have a high prevalence of outcrossing. The genetic advantages of outcrossing are described by two hypotheses: avoidance of inbreeding depression because selfing leads to immediate expression of recessive deleterious mutations, and release from drift load because self‐fertilization leads to long‐term accumulation of deleterious mutations due to genetic drift and, eventually, to extinction. I tested both hypotheses by experimentally crossing Arabidopsis lyrata plants (self‐pollinated, cross‐pollinated within the population, or cross‐pollinated between populations) and measuring offspring performance over 3 years. There were 18 source populations, each of which was either predominantly outcrossing, mixed mating, or predominantly selfing. Contrary to predictions, outcrossing populations had low inbreeding depression, which equaled that of selfing populations, challenging the central role of inbreeding depression in mating system shifts. However, plants from selfing populations showed the greatest increase in fitness when crossed with plants from other populations, reflecting higher drift load. The results support the hypothesis that extinction by mutational meltdown is why selfing hermaphroditic taxa are rare, despite their frequent appearance over evolutionary time.  相似文献   

15.
The observation that offspring produced by the mating of close relatives are often less fit than those produced by matings between unrelated individuals (i.e., inbreeding depression) has commonly been explained in terms of the increased probability of expressing deleterious recessive alleles among inbred offspring (the partial dominance model). This model predicts that inbreeding depression should be limited in regularly inbreeding populations because the deleterious alleles that cause inbreeding depression (i.e., the genetic load) should be purged by regularly exposing these alleles to natural selection. We indirectly test the partial dominance model using four highly inbred populations of an androdioecious crustacean, the clam shrimp Eulimnadia texana. These shrimp are comprised of males and hermaphrodites, the latter capable of either self-fertilizing or mating with a male (i.e., outcrossing between hermaphrodites is impossible). Hermaphrodites are further subdivided into monogenics (produced via self-fertilization) and amphigenics (produced via self-fertilization or outcrossing). Electrophoretic evidence suggests significant differences in heterozygosity among populations, but that selfing rates were not statistically different (average s = 0.67). Additional electrophoretic analyses reveal that three previously described sex-linked loci (Fum, Idh-1, and Idh-2) are all tightly linked to each other, with crossing over on the order of 1% per generation. Although selfing rates are clearly high, we present evidence that early inbreeding depression (hatching rates, juvenile survival, and age at sexual maturity) exists in all four populations. For all of these factors, inbreeding depression was inferred by the positive correlation of multilocus heterozygosity and fitness. Cumulative inbreeding depression (8) is between 0.41 and 0.47 across all populations, which appears to be too low to limit the effects of purging via identity disequilibrium. Instead, we suggest that the maintenance of inbreeding depression in these populations is due to the observed linkage group, which we suggest contains a large number of genes including many related to fitness. Segregation of such a large linkage group would explain our observations of the predominance of amphigenic hermaphrodites in our field samples and of survival differences between monogenics and amphigenics within selfed clutches. We propose that a modified form of the overdominance model for inbreeding depression operating at the level of linkage groups maintains the observed levels of inbreeding depression in these populations even in the face of high rates of selfing.  相似文献   

16.
Gynodioecy is a dimorphic breeding system in which hermaphrodite and female individuals coexist in populations. Theoretical models have shown that if nuclear genes control sex expression, then gynodioecy can evolve only when females have large advantages in one or more fitness components. These female advantages must be large enough that females' expected lifetime production of viable seeds is more than twice that of hermaphrodites. Previous studies have found that cytoplasmic inheritance and/or a large offspring-vigor advantage of females (caused by hermaphrodite self-pollination and inbreeding depression of selfed seeds) account for this breeding system's evolution. This paper reports studies of gynodioecy in Phacelia linearis, an insect-pollinated annual plant in which gender inheritance appears to be nuclear. Twenty-six P. linearis populations surveyed in northern Utah, USA, contain a majority of perfect-flowered hermaphrodites, but most (22) also contain male-sterile individuals (females), at frequencies of up to 0.16. The hermaphrodite selfing rate is low (0.00–0.20 in four populations). Maternal gender does not consistently affect components of offspring vigor, such as seed size, germination rate, seedling survivorship, and vegetative size. Plants of the two genders do not differ in number of seeds per fruit or mean seed mass. Females produce significantly more fruits and seeds than hermaphrodites in natural populations. The ratio of the mean lifetime seed production of females to the mean lifetime seed production of hermaphrodites ranged from 1.31 to 2.52 in six natural populations. Females have greater shoot biomass than hermaphrodites and produce more seeds at any given shoot biomass than hermaphrodites, suggesting that their seed-production advantage arises from gender-specific patterns of resource allocation to growth and reproduction. The gender difference in plant size varies across environments and across genetic backgrounds. In this species nuclear gynodioecy appears to be evolutionarily stable mainly because of resource compensation by females, without a large outcrossing advantage of females.  相似文献   

17.
Levels of inbreeding depression, outcrossing rates, and phenotypic patterns of resource allocation were studied to examine their relative importance in the maintenance of high numbers of females in gynodioecious Schiedea adamantis (Caryophyllaceae), an endemic Hawaiian shrub found in a single population on Diamond Head Crater, Oahu. In studies of inbreeding depression in two greenhouse environments, families of hermaphrodites exhibited significant inbreeding depression (δ = 0.60), based on a multiplicative fitness function using seeds per capsule, germination, survival, and the inflorescence biomass of progeny. Differences between inbred and outcrossed progeny were smallest at the early stage of seeds per capsule and more pronounced at the later stages of survival and inflorescence production. These results are consistent with inbreeding depression caused by many mutations of small effect. Using allozyme analyses, the inbreeding coefficient of adult plants in the field was not significantly different from zero, implying that δ in nature may be equal to one. The single locus estimate of the outcrossing rate for hermaphrodites was 0.50 based on progeny that survived to flowering; corrected for the disproportionate loss before flowering of progeny from selfing, the adjusted outcrossing rate at the zygote stage was 0.32, suggesting that considerable selfing occurs in hermaphrodites. Females were totally outcrossed. When females and hermaphrodites were compared for reproductive output in the field, females produced over twice as many seeds per plant as hermaphrodites, primarily because females had far more capsules per inflorescence than hermaphrodites. Females had greater mass per seed than hermaphrodites in the field, either because of greater provisioning or reduced inbreeding depression. There was no significant differential mortality with respect to sex over a seven year period. The higher number of seeds per plant of females, combined with substantial inbreeding depression and relatively high selfing rates for hermaphrodites, are probably responsible for the maintenance of females in this population. The predicted frequency of females based on data for seed production, the adjusted selfing rate, and inbreeding depression is 42%, remarkably close to the observed frequency of 39%. High levels of inbreeding depression suggest that considerable quantitative genetic variation is present for traits affecting fitness in this population, despite low allozyme variability and a presumed founder effect.  相似文献   

18.
Widén B  Widén M 《Oecologia》1990,83(2):191-196
Summary Pollen movement is often restricted in natural populations, and insufficient pollination is a potential constraint on sexual reproduction in outcrossing species. Seed-set should decrease with increased distance from the pollen source in outcrossing plants. This prediction was tested using females of the clonal, gynodioecious herb Glechoma hederacea in three natural populations. In controlled pollinations, both hermaphrodites and females had similar high percentages of fruit-set and seed-set. In a natural population where a female clone was isolated from the nearest hermaphroditic clone by c. 100 m, fruit-set was low (1%). In another population where hemaphroditic clones were rare and female clones had a patchy distribution, fruit-and seed-set in females were pollen-limited and decreased with increased distance from the nearest pollen source. The estimated mean pollen dispersal distance was 5.9 m when calculated on fruit-set and 5.3 m when calculated on seed-set. The most frequent pollinators were bumblebees. The mean and median distances moved by pollinators between ramets were 0.13 m and 0.05 m. In a third population where female clones were isolated from the nearest hermaphrodites by more than 200 m, fruit-set was 0%. After introduction of 16 hermaphroditic ramets in the center of the female clone, fruit-set varied between 0% and 100% in individual female ramets. Fruit-set decreased with increased distance from the pollen source. The mean and median pollen movement distances were 1.06 m and 0.54 m.  相似文献   

19.
Despite a nearly worldwide distribution in nature, Caenorhabditis elegans exhibits low levels of genetic polymorphism, possibly as an indirect consequence of low levels of outcrossing. In the laboratory, Caenorhabditis elegans males are produced at low rates and are steadily eliminated from cultures, so that reproduction happens largely through self-fertilization in hermaphrodites. C. elegans is increasingly the focus of evolutionary research; however, natural outcrossing rates are difficult to measure because mating tests with laboratory strains are usually required to identify C. elegans. We sampled natural populations of C. elegans with an RNA interference (RNAi) assay. Heterozygosities and polymorphism patterns revealed surprisingly high levels of population structure and outcrossing (approximately 22% of individuals are estimated to be the result of outcrossing and not self-fertilization). The finding of strong local population structure, together with low levels of diversity on local and global scales, suggests a metapopulation model of frequent extinction and recolonization of local populations. The occurrence of substantial outcrossing suggests that the extinction of local populations is probably not driven by the accumulation of harmful mutations.  相似文献   

20.
Plantago lanceolata is a gynodioecious species: In natural populations male steriles (MS) coexist with hermaphrodites (H). Since male steriles have a reproductive disadvantage, without any compensation for their loss in male function by an increase in female function, they are expected to disappear from the population. In this study we investigated the possibility that differences in ecologically important photosynthetic characteristics, between MS and H lines of P. lanceolata. play a role in maintaining gynodioecy. One MS line and two H lines were grown under conditions of high N and light availability, as well as under either N limitation or light limitation, to investigate whether the sex types respond differently to environmental constraints. Photosynthetic light-response and CO2-response curves were made, together with leaf organic N and chlorophyll determinations. There were only few small differences between the lines and since the MS line did not differ in any of the determined photosynthetic characteristics from either H line, it is unlikely that these differences are involved in maintaining male sterility in populations of P. lanceolata. The low-light-grown plants showed a high degree of acclimation as shown by a two-fold higher leaf area to leaf weight ratio (SLA), a two-fold higher investment of N in light harvesting, and higher net photosynthetic rates under low-light conditions, as compared to the high-light-grown plants. The low-N-grown plants used their organic N more efficiently in photosynthesis compared to plants grown at an optimal N supply. This was mainly due to the N-limited plants having leaves with a lower organic N content and thus lower photosynthetic capacities. To a lesser extent it was due to the higher value for the curvature factor of the light-response curves of the N-limited plants, to their decreased rates of photorespiration and possibly to their relatively higher allocation of organic N to photosynthetic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号