首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lyngbya mats in the intertidal of the Laguna Ojo de Liebre are metabolically active for only a few days every 2 weeks during spring tides, with environmental conditions varying greatly during these periods of hydration. Pulse amplitude modulated fluorometry (PAM) and oxygen measurements were used to measure photosynthetic activity during the first few hours after rehydration under various light intensities and salinities. Upon rehydration, a transitory maximum in respiratory activity (10–30 min) occurred before the resumption of photosynthesis, which could recover in about 2 h. Salinities outside the mats' natural range (35–50 psu) were detrimental to photosynthetic recovery. Both high (100 psu) and low (0–10 psu) salinities slowed recovery as well as lowered the overall photosynthetic yield. Photosynthesis was initiated earlier and recovered more rapidly with increasing light intensity. In addition, the positive effect of light on rates of recovery was disproportionately greater at lower salinities (10–25 psu) where high light (500 W·m?2) counteracted the negative effects of low‐salt stress early in recovery. However, higher light intensities became photoinhibitory later in recovery (>2 h). Photosynthesis did not recover uniformly within the mat. Filaments deeper in the mat most likely recovered later than those near the surface due to high light attenuation. The ability of the mats to tolerate desiccation and take advantage of hydration periods even when conditions are suboptimal enables these mats to predominate in the intertidal environment.  相似文献   

2.
Bedrock erosional features in a small stream (Little Schultz Creek, Bibb County, Alabama) created a variety of habitats for epilithic growth. One suck habitat was illustrated by the occurrence of small falls (<0.3 m) in the main channel of the stream and blue-green algal mats associated with them. The cohesive, laminar algal mats were found at 15 such sites along a 250-m reach of the stream. The primary mat matrix consisted of the blue-green alga Oscillatoria submembranacea Ardissone and Strafforella. The uppermost portion of each mat consisted of a thin (<1 mm thick) green layer of biologically active filaments. The lower layers were thicker (up to 2 cm thick) and consisted of brown laminae of Oscillatoria filaments, and associated sediments. In addition, numerous diatoms mere associated with the mat surface. Some were loosely attached (e.g. Achnanthes); others (Cymbella tumida (Bréb.) V. H.) were stalked. These mats were present throughout the year and showed a bimodal annual distribution with maxima hi February and July. In February, total mat coverage was higher than in July. This winter maximum may have been related to a mode of growth dependent upon sedimentation from storm events and subsequent upward growth of the alga. Mat primary productivity on an areal basis (432 mg C · m?2· d?1 in March and 907 mg C · M?2· d?1 in April) was 2–12 times the maxima measured on epizoic and cobbles surfaces and other bedrock surfaces in the same stream. The limited areal coverage of the mats, when compared to other surfaces available for algal colonization, made them less important than other epilithic and epizoic surfaces in terms of total primary production in this stream reach. However, we propose that the combination of their unique structure and high primary productivity may make these algal mats sites of high algal and bacterial metabolic activity, which may include anaerobic processes in midchannel, where such activity would not be expected to occur.  相似文献   

3.
Abstract Zonations of photosynthesis and photopigments in artificial cyanobacterial mats were studied with (i) oxygen and pH microsensors, (ii) fiber-optic microprobes for field radiance, scalar irradiance, and PSII fluorescence, and (iii) a light microscope equipped with a spectrometer for spectral absorbance and fluorescence measurements. Our analysis revealed the presence of several distinct 1–2 mm thick cyanobacterial layers mixed with patches of anoxygenic photosynthetic bacteria. Strong attenuation of visible light confined the euphotic zone to the uppermost 3 mm of the mat, where oxygen levels of 3–4 times air saturation and a pH peak of up to pH 8.8 were observed under saturating irradiance (413 μmol photon m−2 s−1). Oxygen penetration was 5 mm in light and decreased to 1 mm in darkness. Volumetric oxygen consumption in the photic and aphotic zones of illuminated mat was 5.5 and 2.9 times higher, respectively, than oxygen consumption in dark incubated mats. Scalar irradiance reached 100–150% of incident irradiance in the upper 0.5 mm of the mat due to intense scattering in the matrix of cells, exopolymers, and carbonate precipitates. In deeper mat layers scalar irradiance decreased nearly exponentially, and highest attenuation coefficients of 6–7 mm−1 were found in cyanobacterial layers, where photosynthesis and photopigment fluorescence also peaked. Visible light was attenuated >100 times more strongly than near infrared light. Microscope spectrometry on thin sections of mats allowed detailed spectral absorbance and fluorescence measurements at defined positions relative to the mat surface. Besides strong spectral signals of cyanobacterial photopigments (Chl a and phycobiliproteins), the presence of both green and purple photosynthetic bacteria was evident from spectral signals of Bchl a and Bchl c. Microprofiles of photopigment absorbance correlated well with microdistributions of phototrophs determined in an accompanying study. Received: 20 December 1999; Accepted: 10 June 2000; Online Publication: 28 August 2000  相似文献   

4.
Macrozoobenthic communities within and outside of the drift algal mats were compared in Kõiguste Bay, NE Baltic Sea. The patches of the drift algae were on average 0.5–1 km wide in diameter covering about 25% of the total bottom area of the bay. Thickness of the mat did not exceed 6 cm. The biomass of the mat varied between 35 and 1391 g dw m?2. The drift algal mats had no clear negative effect on macrozoobenthos except for a few infaunal species. The drift algae favoured several detrivorous, herbivorous and carnivorous species. Among the studied variables, the thickness of algal mat and oxygen concentration at near-bottom layer explained the best the structure of macrozoobenthos. Total number of invertebrate species increased curvilinearly with the thickness of algal mat having the peak value at 3–5 cm thick algal mat. To conclude, moderate drift algal mats increased habitat complexity and, thus, the diversity of benthic faunal assemblages in otherwise poorly vegetated coastal areas.  相似文献   

5.
Benthic microbial mat communities were sampled from 20 lakes, ponds and streams of the McMurdo Sound region, Antarctica. At least five distinct assemblages could be differentiated by their cyanobacterial species composition, pigment content and vertical structure. The most widely occurring freshwater communities were dominated by thin-trichome (0·5–3 µm) oscillatoriacean species that formed benthic films up to several millimetres thick. ‘Lift-off mats’ produced mucilaginous mats 1–5 cm thick at the surface and edge of certain ponds. Another group of oscillatoriacean communities was characteristic of hypersaline pond environments; these communities were dominated by species with thicker trichomes such as Oscillatoria priestleyi. Black mucilaginous layers of Nostoc commune were widely distributed in aquatic and semi-aquatic habitats. Dark brown sheath pigmentation was also characteristic of less cohesive mats and crusts dominated by Pleurocapsa, Gloeocapsa and Calothrix. High performance liquid chromatography analysis of the lipophilic pigments showed that the upper region of most of the Antarctic mats was enriched in sheath pigments (scytonemin) and/or certain carotenoids such as myxoxanthophyll and canthaxanthin. Most of the chlorophyll a (Chla), as well as phycocyanin, β-carotene and echinenone, was located in the lower strata of the mat profiles. In many of these communities most of the photosynthetic biomass occurred in a ‘deep Chla maximum’ that was well protected from short-wavelength radiation by the surface layer of light-screening pigments.  相似文献   

6.
The homogeneous distribution of the phytoplankton in a shallow (mean depth 8·6 m) unstratified lake, L. Neagh, Northern Ireland, facilitated the study of the interaction of components controlling gross photosynthesis per unit area. These included the photosynthetic capacity, the phytoplankton content of the euphotic zone, and a logarithmic function describing the effective radiation input. These factors were analysed for two sites, the open lake and Kinnego Bay, which respectively had standing crops of up to 90 and 300 mg chlorophyll a m?3 and maximum daily rates of gross integral photosynthesis of 11·7 and 15·6 g O2 m?2 day?1. Values are reduced by the high contribution to light attenuation by non-algal sources, which increases at low standing crops particularly in winter, when values of integral photosynthesis decrease to 0·5 g O2 m?2 day?1. This relative change is the result of self-shading behaviour of the phytoplankton altering the crop content of the euphotic zone at different population densities. Changes in the irradiance function, incorporating day length, are largely responsible for the changes in daily rates of integral gross photosynthesis; as daily irradiance is also a determinant of water temperature, it exerts further influence through the photosynthetic capacity which was strongly correlated with temperature. Much of the gain in gross photosynthesis resulting from higher photosynthetic capacity may not be reflected in a higher net column photosynthesis, because of the greater proportional rise in respiration with temperature. The balance in the water column between respiration losses and photosynthetic input may frequently alter since the ratio of illuminated to dark zones is between 1/4 to 1/5 in the open lake, and small shifts in any of the controlling features may result in conditions unfavourable for growth. This is analysed especially for the increase of diatoms in spring, when small modifications of the underwater light field can delay growth.  相似文献   

7.
Although sea‐ice represents a harsh physicochemical environment with steep gradients in temperature, light, and salinity, diverse microbial communities are present within the ice matrix. We describe here the photosynthetic responses of sea‐ice microalgae to varying irradiances. Rapid light curves (RLCs) were generated using pulse amplitude fluorometry and used to derive photosynthetic yield (ΦPSII), photosynthetic efficiency (α), and the irradiance (Ek) at which relative electron transport rate (rETR) saturates. Surface brine algae from near the surface and bottom‐ice algae were exposed to a range of irradiances from 7 to 262 μmol photons · m?2 · s?1. In surface brine algae, ΦPSII and α remained constant at all irradiances, and rETRmax peaked at 151 μmol photons · m?2 · s?1, indicating these algae are well acclimated to the irradiances to which they are normally exposed. In contrast, ΦPSII, α, and rETRmax in bottom‐ice algae reduced when exposed to irradiances >26 μmol photons · m?2 · s?1, indicating a high degree of shade acclimation. In addition, the previous light history had no significant effect on the photosynthetic capacity of bottom‐ice algae whether cells were gradually exposed to target irradiances over a 12 h period or were exposed immediately (light shocked). These findings indicate that bottom‐ice algae are photoinhibited in a dose‐dependent manner, while surface brine algae tolerate higher irradiances. Our study shows that sea‐ice algae are able to adjust to changes in irradiance rapidly, and this ability to acclimate may facilitate survival and subsequent long‐term acclimation to the postmelt light regime of the Southern Ocean.  相似文献   

8.
Oscillatorian cyanobacteria dominate benthic microbial mat communities in many polar freshwater ecosystems. Capable of growth at low temperatures, all benthic polar oscillatorians characterized to date are psychrotolerant (growth optima > 15° C) as opposed to psychrophilic (growth optima ≤ 15° C). Here, psychrophilic oscillatorians isolated from meltwater ponds on Antarctica's McMurdo Ice Shelf are described. Growth and photosynthetic rates were investigated at multiple temperatures, and compared with those of a psychrotolerant isolate from the same region. Two isolates showed a growth maximum at 8° C, with rates of 0.12 and 0.08 doublings·d ? 1, respectively. Neither displayed detectable growth at 24° C. The psychrotolerant isolate showed almost imperceptible growth at 4° C and a rate of 0.9 doublings·d ? 1 at its optimal temperature of ~23° C. In both photosynthesis versus irradiance and photosynthesis versus temperature experiments, exponentially growing cultures were acclimated for 14 days at 3, 8, 12, 20, and 24° C under saturating light intensity, and [14C] photoincorporation rates were measured. Psychrophilic isolates acclimated at 8° C showed greatest photosynthetic rates; those acclimated at 3° C were capable of active photosynthesis, but photoincorporation was not detected in cells acclimated at 20 and 24° C, because these isolates were not viable after 14 days at those temperatures. The psychrotolerant isolate, conversely, displayed maximum photosynthetic rates at 24° C, though photoincorporation was actively occurring at 3° C. Within acclimation temperature treatments, short‐term photosynthetic rates increased with increasing incubation temperature for both psychrophilic and psychrotolerant isolates. These results indicate the importance of temperature acclimation before assays when determining optimal physiological temperatures. All isolates displayed photosynthetic saturation at low light levels (<128 μmol·m ? 2·s ? 1) but were not photoinhibited at the highest light treatment (233 μmol·m ? 2·s ? 1). Field studies examining the impact of temperature on photosynthetic responses of intact benthic mats, under natural solar irradiance, showed the mat communities to be actively photosynthesizing from 2 to 20° C, with maximum photoincorporation at 20° C, as well as capable of a rapid response to an increase in temperature. The rarity of psychrophilic cyanobacteria, relative to psychrotolerant strains, may be due to their extremely slow growth rates and inability to take advantage of occasional excursions to higher temperatures. We suggest an evolutionary scenario in which psychrophilic strains, or their most recent common ancestor, lost the ability to grow at higher temperatures while maintaining a broad tolerance for fluctuations in other physical and chemical parameters that define shallow meltwater Antarctic ecosystems.  相似文献   

9.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

10.
Ecological studies of Chloroflexis,a gliding photosynthetic bacterium   总被引:2,自引:0,他引:2  
Summary Chloroflexis, a gliding, filamentous, photosynthetic bacterium, is present in the stratified algal-bacterial mats which occur in the 50°–70°C temperature range of alkaline hot spring effluents. The organism is in association with the alga in the upper, algal layer, and also forms thick, orange mats beneath the algal layer. Natural populations of Chloroflexis from these mats demonstrated light-stimulated uptake of some 14C-labelled organic compounds. Photosynthetic 14CO2 fixation by natural samples of Chloroflexis was investigated with respect to temperature, light intensity and mat depth. Bacterial photosynthesis was determined in samples in which algae were present by use of the inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Bacterial photosynthesis was maximal at depths down to about 3 mm and then decreased rapidly to very low levels at greater depths. The greatest amounts of bacteriochlorophyll pigments were also concentrated in the top 3–4 mm of the mat. The optimum light intensity for bacterial photosynthesis (about 400 ft-c) was considerably lower than the normal summer light intensity at the surface of the mat (5000-8000 ft-c).The temperature optima for photosynthesis by the bacterial component of natural mat samples from several sites of different temperatures in a hot spring thermal gradient were determined. Temperature optima approximated the environmental temperatures, indicative of the occurrence of strains of Chloroflexis adapted to different temperatures. Although bacterial standing crop was greatest in the temperature range 50°–55°C, maximum photosynthetic efficiency was observed at about 45°C. Sulfide was stimulatory to photosynthetic 14CO2 fixation by naturally occurring populations of Chloroflexis under field conditions. These data are consistent with the hypothesis that Chloroflexis may utilize sulfide as an electron donor for photosynthetic CO2 reduction. However, it is also likely that Chloroflexis grows photoheterotrophically in these mats, obtaining organic compounds from algal excretory products.  相似文献   

11.
This paper presents results of field studies on the estuarine dinoflagellate Prorocentrum mariae-lebouriae (Parke & Ballantine) Faust in Chesapeake Bay. We tested the hypothesis that the photosynthetic physiology of Prorocentrum shows adaptive responses to low-light during a lengthy subpycnocline transport in estuarine circulation. Prorocentrum underwent a seasonal, northward trnasport between February and June, 1984 and 1985. Low cell densities occurred in the seaward part of the estuary during winter and early-spring, subpycnocline populations progressed up-estuary in the ensuring 2–3 months, and dense surface populations developed in the mesohaline portion of the estuary thereafter. We sampled Prorocentrum from surface and subpycnocline waters and measured photosynthesis-light (P-I) relations with in situ incubations. The photophysiology of Prorocentrum collected below the pycnoline differed from that of cells in the surface mixed layer in that photosynthetic efficiency, α-cell?1, was higher, photosynthetic capacity, Pmax-cell?1 was ·4 times greater for subpycnocline (≦ 10m) samples than for those from the surface mixed layer (≧ 6m). Comparison of in situ photosynthetic properties to those generated in laboratory studies showed that values of α·cell?1 for both surface and subpycnocline samples were in the range found for cultures in low-light. Concentrations of Chls a, c and peridinin·cell?1 and molar pigment ratios peridinin: Chl a and Chl a: Chl c were not significantly different for the surface and subpycnocline samples, nor were C · cell?1 or C : Chl a. Chloroplast and starch volume fractions and the number of thylakoids were the same for samples collected at different depths, and there was no evidence of cytoplasmic vacuolization in any field samples. These morphometric data for cells from natural populations of Prorocentrum most closely resembled data for laboratory cultures grown at or near 2.6E·m-?2·4d?1. A lower growth irradiance of 0.3E·m?2·d?1 produced indications of stress in cultures, including starch depletion and vacuolization, that were never observed in natural populations. Based on the combination of these findings, we conclude that Prorocentrum is adapted to low-light both in the surface mixed layer and beneath the pycnocline, although certain photophysiological characteristics distinguish these two groups of samples.  相似文献   

12.
The capacity of thermal algal-bacterial mats to fix nitrogen (N2) was examined in an alkaline thermal stream, Rabbit Creek, of Yellowstone National Park. Nitrogenase activity and nitrogen-fixation rates of mat cores placed in serum bottles and incubated in situ were estimated by the acetylene-reduction technique. Active nitrogenase was not detected at 60 or 65 C in either the blue-green algal or bacterial undermat components of the mats. Acetylene was reduced by all mats ≤55 C along the thermogradient; mean fixation estimates for the mats ranged from 7 to 5,028 nmoles N2 fixed · mg Chl a?1· hr?1. Maximum fixation occurred at 35 C in the stream; statistical comparison of mean rates ordered the thermogradient mats according to estimated activities: 35 > 40 > 30 > 50 ≥ 55 ≥ 45 C. Mats (≤40 C) dominated by species of Calothrix accounted for ca. 97% of the total nitrogen fixation observed in the stream; the remaining activity was associated with mats containing Mastigocladus laminosus Cohn. Light intensity significantly affected fixation rates of the Calothrix mats which responded in a linear fashion from 9–100% full sunlight (ca. 1,900 μEin · m?2· sec?1). Calothrix mats from 30 and 40 C had maximum nitrogenase activity at their growth temperature suggesting that nitrogen fixation along the thermogradient was optimally adapted to in situ temperatures.  相似文献   

13.
Photosynthesis of marine benthic diatom mats was examined before and after sea ice breakout at a coastal site in eastern Antarctica (Casey). Before ice breakout the maximum under‐ice irradiance was between 2.5 and 8.2 μmol photons·m?2·s?1 and the benthic microalgal community was characterized by low Ek (12.1–32.3 μmol photons·m?2·s?1), low relETRmax (9.2–32.9), and high alpha (0.69–1.1). After breakout, 20 days later, the maximum irradiance had increased to between 293 and 840 μmol photons·m?2·s?1, Ek had increased by more than an order of magnitude (to 301–395 μmol photons·m?2·s?1), relETRmax had increased by more than five times (to 104–251), and alpha decreased by approximately 50% (to 0.42–0.68). During the same time interval the species composition of the mats changed, with a decline in the abundance of Trachyneis aspera (Karsten) Hustedt, Gyrosigma subsalsum Van Heurck, and Thalassiosira gracilis (Karsten) Hustedt and an increase in the abundance of Navicula glaciei Van Heurck. The benthic microalgal mats at Casey showed that species composition and photophysiology changed in response to the sudden natural increase in irradiance. This occurred through both succession shifts in the species composition of the mats and also an ability of individual cells to photoacclimate to the higher irradiances.  相似文献   

14.
Carbon and nitrogen dynamics in a maritime Antarctic stream   总被引:1,自引:0,他引:1  
  • 1 The carbon and nitrogen dynamics in a maritime Antarctic lake outflow stream were investigated. The stream and the algal communities could be split into two zones: a semi-aquatic margin consisting of a perennial cyanobacteria/diatom mat and a flowing channel with a similar perennial mat that was overgrown by annual filamentous chlorophytes during the course of the summer.
  • 2 Neither algal community was limited by nutrient availability. Major nutrients were always available in the stream water. There were slight differences in the atomic ratios of the mats, the N:P ratios in the channel mat being lower than those in the marginal mat. However, both these and the total dissolved N:P ratio in the stream water were all close to those that indicate a balanced supply.
  • 3 There was no net carbon or nitrogen accumulation by the marginal mat suggesting that uptake processes were balanced by loss processes.
  • 4 Maximum rates of carbon fixation (0.1–0.5mgCg?1 dry weight h?1) were similar to those of other perennial Antarctic algal mats. Productivity appeared to be limited by physical factors, but the effects of irradiance and temperature could not be separated.
  • 5 There were no heterocystous cyanobacteria in the mat communities and rates of atmospheric nitrogen fixation were very low (0–10ngNmg?1 mat Nh?1). Fixation accounted for only 0.3% of the nitrogen accumulation of the channel mats, but was higher in the marginal mat where uptake of other sources of nitrogen was also low.
  • 6 Nitrogen accumulation by the channel mat averaged 0.34gNm?2 day?1. Only 0.05gNm?2 day?1 was accounted for by the uptake of dissolved inorganic nitrogen (nitrate plus ammonium). The major (80%) source of nitrogen appeared to be dissolved organic nitrogen. Recycling of nitrogen within the stream ecosystem may also be important.
  相似文献   

15.
Two species of benthic damselfishes from the Gulf of California, Mexico, use contrasting behaviors when feeding on benthic algal communities. The small (±70 g) Cortez damselfish, Eupomacentrus rectifraenum (Gill, 1862), feeds selectively from a multi-species algal mat, eats fleshy red and green algae and ignores brown and calcareous algae. The giant blue damselfish, Microspathodon dorsalis (Gill, 1862), is a large (±450 g), lethargic, nonselective feeder which grazes on a near monoculture of a fleshy red alga, Polysiphonia sp. Feeding activity for both species is low in the morning peaks during late afternoon, and drops sharply as night approaches. Based on feeding rates, gut-filling times, and weights of gut contents, Cortez damselfish process six to eight full guts of food and giant blue damselfish three full guts of food per day. The algal mat exhibits high standing crops (291–618 g dry wt · m?2) and low productivity, but the preferred food of the Cortez damselfish (Ulva) appears to colonize the mat frequently and grow rapidly. The Polysiphonia dominated community on giant blue damselfish territories exhibits low standing crops (23 g · m?2) and high productivity (34–47 times that of the mat per gram algae). Even though the feeding behaviors and resources used by the two damselfishes differ, both species eat similar food (delicate red and green fleshy algae, and depend on rapid colonization and/or high productivity to maintain their primary foods in the grazed algal community.  相似文献   

16.
Endolithic photosynthetic microorganisms like cyanobacteria and algae are well known from savannas and deserts of the world, the high Arctic, and also Antarctic habitats like the Dry Valleys in the Ross Dependency. These endolithic microbial communities are thought to be at the limits of life with reported ages in the order of thousands of years. Here we report on an extensive chasmoendolithic cyanobacterial community inside granite rocks of Mt. Falconer in the lower Taylor Valley, Dry Valleys. On average, the cyanobacterial community was 4.49 ± 0.95 mm below the rock surface, where it formed a blue‐green layer. The community was composed mainly of the cyanobacterium Chroococcidiopsis sp., with occasional Cyanothece cf. aeruginosa (Nägeli) Komárek and Nostoc sp. Mean biomass was 168 ± 44 g carbon · m?2, and the mean chl a content was 24.3 ± 34.2 mg · m?2. In situ chl fluorescence measurements—a relative measure of photosynthetic activity—showed that they were active over long periods each day and also showed activity the next day in the absence of any moisture. Radiocarbon dating gave a relatively young age (175–280 years) for the community. Calculations from microclimate data demonstrated that formation of dew or rime was possible and could frequently activate the cyanobacteria and may explain the younger age of microbial communities at Mt. Falconer compared to older and less active endolithic microorganisms reported earlier from Linnaeus Terrace, a higher altitude region that experiences colder, drier conditions.  相似文献   

17.
Biomass, akinete numbers, net photosynthesis, and respiration of Pithophora oedogonia were monitored over two growing seasons in shallow Surrey Lake, Indiana. Low rates of photosynthesis occurred from late fall to early spring and increased to maximum levels in late spring to summer (29–39 mgO2·g?1 dry wt·h?1). Areal biomass increased following the rise in photosynthesis and peaked in autumn (163–206g dry wt·m?2). Photosynthetic rates were directly correlated with temperature, nitrogen, and phosphorus over the entire annual cycle and during the growing season. Differences in photosynthetic activity and biomass between the two growing seasons (1980 and 1981) were apparently related to higher, early spring temperatures and higher levels of NO3-N and PO4-P in 1981. Laboratory investigations of temperature and light effects on Pithophora photosynthesis and respiration indicated that these processes were severely inhibited below 15°C. The highest Pmax value occurred at 35°C (0.602 μmol O2·mg?1 chl a·min?1). Rates of dark respiration did not increase above 25°C thus contributing to a favorable balance of photosynthetic production to respiratory utilization at high temperatures. Light was most efficiently utilized at 15°C as indicated by minimum values of Ik(47 μE·m?2·s?1) and Ic (6 μE·m?2·s?1). Comparison of P. oedogonia and Cladophora glomerata indicated that the former was more tolerant of temperatures above 30°C. Pithophora's tolerance of high temperature and efficient use of low light intensity appear to be adaptive to conditions found within the dense, floating algal mats and the shallow littoral areas inhabited by this filamentous alga.  相似文献   

18.
We used microsensors to characterize physicochemical microenvironments and photosynthesis occurring immediately after water saturation in two desert soil crusts from southeastern Utah, which were formed by the cyanobacteria Microcoleus vaginatus Gomont, Nostoc spp., and Scytonema sp. The light fields within the crusts presented steep vertical gradients in magnitude and spectral composition. Near-surface light-trapping zones were formed due to the scattering nature of the sand particles, but strong light attenuation resulted in euphotic zones only ca. 1 mm deep, which were progressively enriched in longer wavelengths with depth. Rates of gross photosynthesis (3.4–9.4 mmol O2·m?2·h?1) and dark respiration (0.81–3.1 mmol O?2·m?2·h?1) occurring within 1 to several mm from the surface were high enough to drive the formation of marked oxygen microenvironments that ranged from oxygen supersaturation to anoxia. The photosynthetic activity also resulted in localized pH values in excess of 10, 2–3 units above the soil pH. Differences in metabolic parameters and community structure between two types of crusts were consistent with a successional pattern, which could be partially explained on the basis of the microenvironments. We discuss the significance of high metabolic rates and the formation of microenvironments for the ecology of desert crusts, as well as the advantages and limitations of microsensor-based methods for crust investigation.  相似文献   

19.
Influence of krummholz mat microclimate on needle physiology and survival   总被引:1,自引:0,他引:1  
Summary Microclimate and photosynthesis of krummholz mat growth forms of Picea engelmanii (Parry) and Abies lasiocarpa [Hook.] Nutt. were investigated to determine structural features which may aid survival in alpine environments. The structure of krummholz mats was described in terms of the vertical distribution of leaf area index and leaf area density, which exceeded 50 m-1 (based on total leaf surface area) near the canopy surface and approached zero below 30 cm from the surface in both species. Photosynthetic photon flux density (PPFD, 0.4–0.7 m wavelengths) and wind decreased by an average of 6 and 50-fold, respectively, between 1 m above and 10 cm below mat surfaces in both species. Needle temperatures on a P. engelmannii krummholz mat during July averaged about 2°C above air temperature during the day, with a maximum overtemperature of greater than 20°C above T air during one sunlit period. At night, needle temperatures averaged 3–4°C below T air.Net photosynthesis in year-old P. engelmannii shoots reached a maximum at 15–20°C during July and August. Surface shoots were light saturated at near 1200 moles m-2s-1 PPFD, and had higher photosynthetic rates than subsurface, predominantly shaded shoots above 800 moles m-2s-1. Shade shoots had higher photosynthetic rates when PPFD was below 600 moles m-2s-1, and at 250 moles m-2s-1 shade shoots maintained about 50% of the net photosynthetic rate of sun shoots at light saturation. Shade shoots appeared capable of benefitting photosynthetically from elevated temperatures within krummholz mats despite relatively low light levels. Especially rapid photosynthesis may occur when canopy needles are illuminated by sunflecks and needle temperatures rise by 10° C or more.Snow cover appears crucial for the survival of needles during winter. Snow accumulated within krummholz needle canopies before the sub-canopy zone of unfoliated branches became filled. The concentrated needle growth in the krummholz canopy captured snow in early autumn without support from ground-level snowpack. Early snow cover in both species prevented cuticle abrasion and resulted in high winter needle water contents and viabilities for subsurface compared to surface needles which became abraded, severely dehydrated, and had high mortality between December and February, especially on windward sides of shoots.Extremely high concentrations of needles within krummholz mat canopies created an aerodynamic structure which elevated needle temperatures to more optimal photosynthetic levels in summer and resulted in more efficient snow accumulation in winter. These factors appear crucial for winter needle survival. Thus, krummholz mats appear to be an important adaptation in growth form which provides survival benefits in both summer and winter.  相似文献   

20.
The importance that frond crowding represents for the survival of fronds of the clonal intertidal alga Mazzaella cornucopiae (Postels et Ruprecht) Hommersand (Rhodophyta, Gigartinaceae) was investigated in Barkley Sound, British Columbia, Canada. Frond density is high for this species, up to 20 fronds·cm?2 in the most crowded stands. Frond crowding imposes a cost in the form of reduced net photosynthetic rates when fronds are fully hydrated as a result of reduced irradiance compared with experimental (not found naturally) low-density stands. However, the interaction between desiccation and irradiance alters this relationship between net photosynthetic rates and frond density. During a typical daytime low tide in spring, irradiance is 10–30 μmol·m?2·s?1 below the canopy of fronds, and frond desiccation (relative to total water content) can reach 43% at the end of the low tide. In contrast to natural stands, fronds from experimentally thinned stands are subjected to irradiances up to 2000 μmol·m?2·s?1 because of the spatial separation among fronds and can desiccate up to 81% at the end of the same low tide. Laboratory experiments showed that negative net photosynthetic rates occur between 40% and 80% desiccation at an irradiance of 515 μmol·m?2·s?1, and the literature suggests that strong bleaching could occur as a result. At 20 μmol·m?2·s?1 of irradiance and desiccation levels up to 40%, simulating understory conditions of natural stands, net photosynthetic rates are never negative. Experimental thinning of stands of M. cornucopiae done during spring effectively resulted in a stronger extent of frond bleaching compared with natural stands. Therefore, the cost of reduced net photosynthetic rates at high frond densities when fronds are fully hydrated is counterbalanced by the protective effects of frond crowding against extensive bleaching, essential for survival at the intertidal zone. Future research will have to demonstrate the possible relationship between the frequency and duration of negative net photosynthetic rates and the extent of frond bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号