首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recruitment of Pseudolabrus celidotus Bloch & Schneider was measured at 10 reef areas over four seasons (1977–1980) in north-eastern New Zealand. These encompassed six different habitat types, defined on the basis of their major physical and biological features. Recruitment differed among habitats and years, but spatial differences were more pronounced than temporal changes. Shallow broken rock (SBR) habitats dominated by macrophytic brown algae consistently had the highest recruitment. Six areas within SBR habitats were censused over three seasons (1979–1981). Even within this one habitat type, most of the variation in numbers was explained by spatial effects. Furthermore, the differences in recruitment between sites remained fairly constant because changes between years were similar in magnitude and direction.An adult removal experiment established that recruitment was independent of adult numbers. Macroalgae affected recruitment as was demonstrated by an algal removal experiment, which resulted in a marked reduction in recruitment, and an algal addition (via urchin removal) experiment which resulted in an increase. Juvenile densities increased as an exponential function of algal biomass per unit area, but the relationship was dependent on depth. Recruitment reached higher levels in shallow habitats (< 8 m) than deeper ones, despite a similar range of algal biomass.It is suggested that there are several factors operating at the time of or shortly after settlement, which result in spatial differences in recruitment on a very small scale. The observed temporal variation may be due to a different set of factors operating prior to settlement, and may have effects measurable over a considerably broader spatial scale.  相似文献   

2.
Three species of mangroves, Rhizophora stylosa, Rhizophora mangle (synonym R. samoensis) and Bruguiera gymnorhiza in the family Rhizophoraceae were studied to understand the flowering pattern, propagule development and the propagule size at maturity prior to dispersal from the mother plant. The study was conducted in the Wet and the Dry zones over two seasons in Viti Levu, the Main Island of Fiji. The flower number, number of propagules and propagule size at maturity were significantly different among three species and within species in the Dry and the Wet zones. Only 1–2% of total flowers in each species became mature propagules. This percentage was significantly lower in the Dry zone for all three species. Rhizophora stylosa produced the biggest size of propagules followed by Rhizophora mangle and Bruguiera gymnorhiza. Relatively longer and heavier propagules were recorded in the Wet zone and shorter and lighter in the Dry zone. Inter-seasonal differences were not significant for these characters. This could be mainly due to almost similar amount of rainfall, relative humidity and temperature regimes over two seasons within each zone.  相似文献   

3.
We demonstrated the effect of an aquatic herbivore on the spatial arrangement of benthic algal biomass within artificial stream channels. Transects of ceramic tiles were exposed to a gradient of snail (Physella) densities in a 30 d experiment. We observed positive effects of snails on the mean abundance of overstory algae (the filamentous chlorophyte Cladophora and associated epiphytes), an important benthic microhabitat in streams. Snails altered several aspects of the spatial arrangement of overstory algae. Snails reduced the strength of downstream gradients in overstory biomass, as well as residual variability around these gradients. Geostatistical analysis revealed that snails also reduced the strength of spatial dependence, and so reduced spatial heterogeneity of the overstory, at small scales (<40 cm). As a result, organisms inhabiting the overstory might experience a more fragmented habitat landscape at high snail densities. In addition, snails increased the scale of spatial dependence in understory algal biomass (algae remaining on tiles after overstory was removed) from 10 cm to 40 cm. Consumer effects on the spatial arrangement of a microhabitat argue for the inclusion of feedbacks between the biota and the environment in spatially-explicit models.  相似文献   

4.
Recruitment is known to influence distributions and abundances of benthic marine organisms. It is therefore important to document patterns of variability in recruitment and how these relate to patterns in established assemblages. This study provides an integrated assessment of the temporal and spatial variation in supply and recruitment of propagules and established populations of several macroalgae. Propagules in water samples from two stages of the incoming tide, recruitment to artificial substrata and percentage cover of species established on the shore were recorded every 2 months from December 1994 to October 1995, in two zones of an intertidal, wave-exposed rocky shore. Variability in recruitment was measured at three spatial scales: 10s cm, 100s cm and 100s m. Availability and recruitment of most taxa were greatest between April and August, although many species had available propagules and recruited throughout the year. Temporal variation in the established assemblages was, however, more species-specific. Differences in established assemblages between zones were reflected in differences in availability and recruitment of propagules between zones. Recruitment could not be predicted directly from supply of propagules, but the two processes were linked. For most species, the greatest variation in recruitment occurred at the smallest spatial scale of 10s cm, although there was also considerable large-scale (between site) variation in recruitment of several species. Results indicate that while pre-and post-settlement mortality are likely to influence macroalgal distribution and abundance, the temporal and spatial variability in supply and recruitment of propagules can explain much of the patchiness in macroalgal assemblages.  相似文献   

5.
Recent studies have shown that predator chemical cues can limit prey demographic rates such as recruitment. For instance, barnacle pelagic larvae reduce settlement where predatory dogwhelk cues are detected, thereby limiting benthic recruitment. However, adult barnacles attract conspecific larvae through chemical and visual cues, aiding larvae to find suitable habitat for development. Thus, we tested the hypothesis that the presence of adult barnacles (Semibalanus balanoides) can neutralize dogwhelk (Nucella lapillus) nonconsumptive effects on barnacle recruitment. We did a field experiment in Atlantic Canada during the 2012 and 2013 barnacle recruitment seasons (May–June). We manipulated the presence of dogwhelks (without allowing them to physically contact barnacles) and adult barnacles in cages established in rocky intertidal habitats. At the end of both recruitment seasons, we measured barnacle recruit density on tiles kept inside the cages. Without adult barnacles, the nearby presence of dogwhelks limited barnacle recruitment by 51%. However, the presence of adult barnacles increased barnacle recruitment by 44% and neutralized dogwhelk nonconsumptive effects on barnacle recruitment, as recruit density was unaffected by dogwhelk presence. For species from several invertebrate phyla, benthic adult organisms attract conspecific pelagic larvae. Thus, adult prey might commonly constitute a key factor preventing negative predator nonconsumptive effects on prey recruitment.  相似文献   

6.
Experimental field manipulations of artificial substrata were used to examine the mechanisms controlling attached algal zonation down the face of the dam in Lake McConaughy, a large reservoir in western Nabraska. Sets of clay tiles were incubated in the upper (2.5 m depth) and lower (8 m depth) growth zones for two weeks. Five sets tiles were then switched from the upper to the lower growth zone and vice versa. Five additional sets of tiles were switched to the lower zone and artificially disturbed. Diatom cell densities increased rapidly in both the zones; however, wind-induced turbulence caused dramatic declines (up to 61%) in densities in the upper zone. Consequently, cell densities in the upper and lower growth zones were not significantly different after four weeks, despite the 17–30% higher light levels in the upper zone. Based on cell densities and relative abundances on clay tiles and naturally occurring rocks, 26 of the 32 most common diatom taxa had a significant upper (10) or lower (16) zone preference. Of these, 15 taxa exhibited a consistent response to one or both switching manipulations, confirming a growth zone preference, and two showed a clear preference for disturbed substrata. Diatom growth form appeared to play a major role in determining the vertical zonation of attached communities, since actively motile taxa exhibited a lower zone preference and stalked forms occurred primarily in the upper zone. The present study indicates that light attenuation and wave disturbance are primary mechanisms that control the vertical zonation of freshwater epilithic algae.  相似文献   

7.
William J. Platt 《Oecologia》1976,22(4):399-409
Summary Some perennial fugitive plants that colonize badger disturbances in xeric prairies have a limited dispersal capacity, and consequently propagules are dispersed over a small area. I hypothesized that high density-dependent mortality might occur early in the life history of such species, and thus increased survival might occur in subsequent age classes because intraspecific competition would be reduced. These hypotheses were tested using natural and experimental cohorts of Mirabilis hirsuta (Pursh) MacM. From these data and field observations, inferences were obtained concerning selective forces operating upon life history characteristics of this species.The distance between individuals of M. hirsuta increases in successive age classes; the greatest decrease in density occurs between the propagule and seedling age classes. Mortality of propagules due to predation by ants and mice was density-dependent. Predation rates were highest at high propagule densities and predation upon propagules located on badger disturbances was higher than the mortality of propagules at similar densities in undisturbed prairie. The results of mortality in the propagule age class are seedlings present only at low densities and located away from parent plants. Seedlings survive to maturity only if they are located on badger disturbances; this species apparently can not successfully compete with plants present in undistrubed prairie. On badger disturbances seedlings present at low densities have much higher survival (roughly 50%) to maturity than do seedlings present at high densities (essentially zero). Thus, if high densities of propagules occur on a disturbance, predation upon propagules results, indirectly, in increased survival of seedlings to maturity. Such predation potentially could have important effects upon interspecific competition of M. hirsuta with other fugitives also colonizing badger disturbances.Reproductive success of M. hirsuta on the Cayler Prairie Preserve is contingent upon successful colonization of disturbance sites. It would appear that selection has operated upon the life history characteristics to favor both successful immigration onto new sites and establishment of seedlings on those sites. Relatively few, but large propagules are produced annually over a long adult life span. While large propagules enhance seedling establishment on xeric sites, production of few propagules annually for a number of years increases the likelihood of immigration onto sites that are variable in the time of appearance within the dispersal range of the plant.  相似文献   

8.
One of the key components in assessing marine sessile organism demography is determining recruitment patterns to benthic habitats. An analysis of serially deployed recruitment tiles across depth (6 and 12 m), seasons (summer and winter) and space (meters to kilometres) was used to quantify recruitment assemblage structure (abundance and percent cover) of corals, sponges, ascidians, algae and other sessile organisms from the northern sector of the Great Barrier Reef (GBR). Polychaetes were most abundant on recruitment titles, reaching almost 50% of total recruitment, yet covered <5% of each tile. In contrast, mean abundances of sponges, ascidians, algae, and bryozoans combined was generally less than 20% of total recruitment, with percentage cover ranging between 15–30% per tile. Coral recruitment was very low, with <1 recruit per tile identified. A hierarchal analysis of variation over a range of spatial and temporal scales showed significant spatio-temporal variation in recruitment patterns, but the highest variability occurred at the lowest spatial scale examined (1 m—among tiles). Temporal variability in recruitment of both numbers of taxa and percentage cover was also evident across both summer and winter. Recruitment across depth varied for some taxonomic groups like algae, sponges and ascidians, with greatest differences in summer. This study presents some of the first data on benthic recruitment within the northern GBR and provides a greater understanding of population ecology for coral reefs.  相似文献   

9.
测定了裙带菜、叉开网地藻、海带、囊藻、海蒿子、鼠尾藻、萱藻和水云等8种褐藻的77K荧光光谱并同菠菜和红藻条斑紫菜作了比较。结果表明与红藻和高等植物明显不同,褐藻没有作为PSⅠ特征的730 nm荧光峰。按荧光主峰的波长,可以分为二种类型:裙带菜、叉开网地藻、海带和囊藻的荧光主峰位于690 nm,海蒿子、萱藻、水云和鼠尾藻的荧光主峰在705-720 nm。这种77K荧光特异性预示褐藻同高等植物之间在PSⅠ结构上的差异。  相似文献   

10.
Changes in biomass and chemical composition, and the reproductive phenology ofPorphyra columbina Mont. were monitored at three sites in southern New Zealand over two growing seasons. Both temporal and spatial variations were found. Seasonal changes in biomass and chemical components were correlated with seawater nitrate concentrations and temperature. The summer decline in biomass was a result of the onset of unsuitable environmental conditions and the release of reproductive tissue. Under more suitable conditions, the decline in biomass was delayed. There was an inverse relationship between vegetative growth and reproduction. Reproductive plants first appeared in August at a time of increasing temperature, irradiance and daylength. Only larger plants which were mainly found in subsites low on the shore became reproductive. Plants sampled from high subsites had a shorter growth season, were generally smaller, had lower nitrogen and pigment content and were non-reproductive.Presented at the XIIIth International Seaweed Symposium, University of British Columbia, Vancouver, Canada, August 1989.  相似文献   

11.
1. The way light stress controls the recruitment of aquatic plants (phanerogams and charophytes) is a key process controlling plant biodiversity, although still poorly understood. Our aim was to investigate how light stress induced by phytoplankton, that is, independent from the aquatic plants themselves, determines the recruitment and establishment of plant species from the propagule bank. The hypotheses were that an increase in light stress (i) decreases abundance and species richness both of established aquatic plants and of propagules in the bank and (ii) decreases the recruitment success of plants from this bank. 2. These hypotheses were tested in 25 shallow lakes representing a light stress gradient, by sampling propagule banks before the recruitment phase and when the lakes are devoid of actively growing plants (i.e. at the end of winter), established vegetation at the beginning of the summer and phytoplankton biomass (chlorophyll a) during the recruitment and establishment phase. 3. The phytoplankton biomass was negatively correlated with the richness and abundance of established vegetation but was not correlated with the propagule bank (neither species richness nor propagule abundance). The similarity between the propagule bank and established vegetation decreased significantly with increasing phytoplankton biomass. 4. The contrast in species composition between the vegetation and the propagule bank at the highest light stress suggests poor recruitment from the propagule bank but prompts questions about its origin. It could result from dispersal of propagules from neighbouring systems. Propagules could also originate from a persistent propagule bank formerly produced in the lake, suggesting strong year‐to‐year variation in light stress and, as a consequence, in recruitment and reproductive success of plants.  相似文献   

12.
The importance of annual recruitment to the structure of adult stands of Sargassum was determined for a mixed species Sargassum bed at Rottnest Island, Western Australia. The morphologically similar species Sargassum spinuligerum Sonder, S. distichum Sonder, and S. podacanthum Sonder grew together in the shallow subtidal (6 m). Positive species determinations were only possible when thalli were reproductive, so recruits, bases, and vegetative annuals for all species were grouped together. Densities of recruits, perennial bases, vegetative annuals, and reproductive annuals were determined at monthly intervals from 20 randomly placed 0.25-m?2 quadrats. Recruitment and mortality for recruits and adults were further determined at three monthly intervals from 6-×-1-m?2 permanent quadrats. The density of adults varied little with season (between 32 and 58 m?2). Growth of annuals was initiated in April, thalli became reproductive by late August–early September, and senescence occurred in December–January. Density of recruits was highly variable (1.6–210 individuals-m?2) and peaked seasonally during late summer (January–February) and then declined rapidly. Adults showed a complete turnover of thalli in the bed over 25–27 months. Adult mortality was compensated by annual recruitment from propagules (43%) and vegetative regeneration from fragments of holdfasts left on the reef (57%). A seasonal pattern in survivorship was observed for adults that grew from recruits with higher initial numbers and lower mortalities for August and November cohorts. Little seasonally was observed in survivorship of adults that grew vegetatively from remnant crusts. Although initial cohort sizes were smaller for adults grown from recruits than from remnant crusts, mortality was lower, resulting in similar contributions to adult density from both recruits and remnant crusts. Recruitment from propagules and vegetative regeneration played an important role in buffering the adult stand from high rates of mortality and reducing seasonal variation in adult density and contributed to the persistence and seasonal structure of Sargassum beds at Rottnest Island.  相似文献   

13.
Previous work has shown that tree turnover, tree biomass and large liana densities have increased in mature tropical forest plots in the late twentieth century. These results point to a concerted shift in forest ecological processes that may already be having significant impacts on terrestrial carbon stocks, fluxes and biodiversity. However, the findings have proved controversial, partly because a rather limited number of permanent plots have been monitored for rather short periods. The aim of this paper is to characterize regional-scale patterns of 'tree turnover' (the rate with which trees die and recruit into a population) by using improved datasets now available for Amazonia that span the past 25 years. Specifically, we assess whether concerted changes in turnover are occurring, and if so whether they are general throughout the Amazon or restricted to one region or environmental zone. In addition, we ask whether they are driven by changes in recruitment, mortality or both. We find that: (i) trees 10 cm or more in diameter recruit and die twice as fast on the richer soils of southern and western Amazonia than on the poorer soils of eastern and central Amazonia; (ii) turnover rates have increased throughout Amazonia over the past two decades; (iii) mortality and recruitment rates have both increased significantly in every region and environmental zone, with the exception of mortality in eastern Amazonia; (iv) recruitment rates have consistently exceeded mortality rates; (v) absolute increases in recruitment and mortality rates are greatest in western Amazonian sites; and (vi) mortality appears to be lagging recruitment at regional scales. These spatial patterns and temporal trends are not caused by obvious artefacts in the data or the analyses. The trends cannot be directly driven by a mortality driver (such as increased drought or fragmentation-related death) because the biomass in these forests has simultaneously increased. Our findings therefore indicate that long-acting and widespread environmental changes are stimulating the growth and productivity of Amazon forests.  相似文献   

14.
Distribution of the nematode community in a California vineyard was studied over a 13-month period. Omnivorous and microbivorous nematodes were similarly distributed in the root zone, with greatest densities occurring between vine rows and near the soil surface. Greatest densities of plant-parasitic nematodes were found in the vine row, with the individual species differing in their vertical distribution. Total nematode biomass was greatest between rows near the surface. Biomass of plant parasites was greatest in the upper 30 cm of soil in the row, whereas biomass of microbivores was greatest in this region between rows. Of the plant-parasitic nematodes, the variability in distribution among vines was greatest for Paratylenchus hamatus and least for Meloidogyne spp.  相似文献   

15.
Increases in the long‐range aerial transport of reactive N species from low to high latitudes will lead to increased accumulation in the Arctic snowpack, followed by release during the early summer thaw. We followed the release of simulated snowpack N, and its subsequent fate over three growing seasons, on two contrasting high Arctic tundra types on Spitsbergen (79°N). Applications of 15N (99 atom%) at 0.1 and 0.5 g N m?2 were made immediately after snowmelt in 2001 as either Na15NO3 or 15NH4Cl. These applications are approximately 1 × and 5 × the yearly atmospheric deposition rates. The vegetation at the principal experimental site was dominated by bryophytes and Salix polaris while at the second site, vegetation included bryophytes, graminoids and lichens. Audits of the applied 15N were undertaken, over two or three growing seasons, by determining the amounts of labeled N in the soil (0–3 and 3–10 cm), soil microbial biomass and different vegetation fractions. Initial partitioning of the 15N at the first sampling time showed that ~60% of the applied 15N was recovered in soil, litter and plants, regardless of N form or application rate, indicating that rapid immobilization into organic forms had occurred at both sites. Substantial incorporation of the 15N was found in the microbial biomass in the humus layer and in the bryophyte and lichen fractions. After initial partitioning there appeared to be little change in the total 15N recovered over the following two or three seasons in each of the sampled fractions, indicating highly conservative N retention. The most obvious transfer of 15N, following assimilation, was from the microbial biomass into stable forms of humus, with an apparent half‐life of just over 1 year. At the principal site the microbial biomass and vascular plants were found to immobilize the greatest proportion of 15N compared with their total N concentration. In the more diverse tundra of the second site, lichen species and graminoids competed effectively for 15NH4‐N and 15NO3‐N, respectively. Results suggest that Arctic tundra habitats have a considerable capacity to immobilize additional inorganic N released from the snow pack. However, with 40% of the applied 15N apparently lost there is potential for N enrichment in the surrounding fjordal systems during the spring thaw.  相似文献   

16.
17.
We used size-based population matrix models to describe the demography of the demosponge Amphimedon compressa. The relative importance of growth, survivorship, and recruitment to population growth (λ) was assessed by performing elasticity and life table response experiment (LTRE) analyses. We also evaluated the relative contribution of sexual and asexual recruitment to λ by analyzing four different scenarios: (1) the combined impact of sexual and asexual recruitment, (2) the impact of only sexual recruits, (3) the impact of only asexual fragmentation, and (4) the impact of no recruitment. Size-based transition matrices were parameterized with field data collected at two sites in the southwest coast of Puerto Rico: Media Luna West (MLW), a reef exposed to high water movement and at Las Pelotas (LP), a reef experiencing low water motion. Estimated λ of 0.8940 and 0.7973 at MLW and LP respectively suggest that both populations are declining. Elasticity analysis indicated that survivorship may be the most important contributor to λ at both sites. However, λ at MLW was influenced more by the survivorship of small individuals whereas survivorship of the large size-class contributed the most to λ at LP. LTRE analysis indicates that the difference in λ between sites was mostly due to difference in survivorship of small sponges. At both sites, λ decreased considerably when sexual recruitment was excluded from the model whereas the absence of asexual recruitment barely changed λ. Therefore, it is suggested that sexual recruitment plays a major role (in comparison to asexual fragmentation) in the population dynamics of this sponge at the studied sites. We conclude that spatial variability in water motion plays an important role in population dynamics of A. compressa by influencing survivorship patterns, including the relative contribution of asexual and sexual recruitment to population growth.  相似文献   

18.
Density dependent recruitment in the reef fish Chaetodon miliaris   总被引:1,自引:0,他引:1  
Synopsis Recruitment of reef fish has generally been found to be unrelated to or positively related to adult densities. This paper reports an inverse relationship between the number of recruits of Chaetodon miliaris and the density of conspecific adults. C. miliaris are non-territorial, planktivorous butterflyfish. The study populations occurred on the flanks of patch reefs of about 30 m in diameter. At their peak densities populations consisted of 300–400 C. miliaris. Recruitment (the appearance in the stock of fish less than 3.5cm in total length) occurred primarily from April to June and corresponded to the new moon period in these months. Populations generally showed a steady decline in numbers during months of the year when recruitment was not occurring: the finite rate of decline was approximately 30% per month. Populations varied in the density of adults at the start of the spring-summer period of recruitment, and the magnitude of recruitment to a reef was inversely related to the density of these conspecific adults. Reduction of the densities of adult C. miliaris through trap fishing, resulted in increased recruitment to the fished stock. These results provide evidence that in some. species of reef fish, benthic processes may play an important role in determining the magnitude of recruitment to an adult stock, in contrast to the widely held view that recruitment is in large part a result of chance events in the plankton or that recruitment is directly related to adult densities.  相似文献   

19.
Globally, many coral reefs are degraded and demonstrate reduced coral cover and increased macroalgal abundance. While negative correlations between macroalgae and coral recruitment have commonly been documented, the mechanisms by which macroalgae affects recruitment have received little attention. Here we examined the effect of macroalgae on larval settlement and the growth and survival of coral recruits, in a field experiment over nine months. Exclusion treatments were used to manipulate herbivory and macroalgal biomass, while settlement tiles measured coral settlement and survival. After nine months the volume of macroalgae was up to 40 times greater in the caged treatments than in controls and the settlement of coral larvae on the undersides of tiles within caged plots was 93% lower than in the uncaged treatments. The growth and survival of coral recruits was also severely reduced in the presence of macroalgae: survival was 79% lower in caged treatments and corals were up to 58% smaller with 75% fewer polyps. These data indicate that macroalgae has an additive effect on coral recruitment by reducing larval settlement and increasing recruit mortality. This research demonstrates that macroalgae can not only inhibit coral recruitment, but also potentially maintain dominance through a positive feedback system.  相似文献   

20.
Riparian zones are landscape features adjacent to streams and are widely recognized as important in reducing erosion and filtering groundwater. Few studies directly investigate rooting dynamics of riparian areas, and little information exists concerning riparian root densities, biomass, depth profiles, changes through time, or vulnerability to disturbance. This study examined spatial and temporal patterns in root systems in streamsides influenced by season, hydrologic regime, vegetative composition, and ice storm disturbance in the eastern Adirondacks, New York. Sequential root cores and in-growth cores were collected from June 2000 through August 2001 in a riparian area with minimal ice storm damage adjacent to a third-order stream. Data were used to assess seasonal trends in root biomass and to provide a reference for spatial comparisons. The biomass and surface area of roots collected in the reference site cores were compared with cores collected at nine additional riparian sites differing in degree of canopy damage from the January 1998 ice storm. Average root biomass at the reference site was 1330 g/m2, comparable to or greater than values reported for terrestrial and other riparian systems. Root biomass varied seasonally with a maximum root biomass in August, 2000; this result was not repeated the following year after the water table inundated much of the rooting zone in mid-June. Root biomass was spatially variable on a range of scales. Although the maximum root surface area occurred in the upper 10 cm, root biomass peaked at 20–30 cm belowground, unlike observations from most other root studies where the maximum root biomass has been found in the top 10 cm. Areas severely damaged by the ice storm had significantly less root biomass and surface area than areas with low damage. This study demonstrates that root biomass in riparian areas is highly dynamic over time, space, and across disturbance sites. Our findings suggest that the spatial variability in root densities has direct implications for riparian vulnerability to erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号