首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently demonstrated that an RNA-DNA oligonucleotide corrected a point mutation in the mouse tyrosinase gene, resulting in permanent and inheritable restoration of tyrosinase enzymatic activity, melanin synthesis, and pigmentation changes in cultured melanocytes. In this study, we extended gene correction of melanocytes from tissue culture to live animals, using a chimeric oligonucleotide designed to correct a point mutation in the tyrosinase gene. Both topical application and intradermal injection of this oligonucleotide to albino BALB/c mouse skin resulted in dark pigmentation of several hairs in a localized area. The restored tyrosinase enzymatic activity was detected by dihydroxyphenylacetic acid (DOPA) staining of hair follicles in the treated skin. Tyrosinase gene correction was also confirmed by restriction fragment length polymorphism analysis and DNA sequencing from skin that was positive for DOPA staining and melanin synthesis. Localized gene correction was maintained three months after the last application of the chimeric oligonucleotides. These results demonstrated correction of the tyrosinase gene point mutation by chimeric oligonucleotides in vivo.  相似文献   

2.
We recently demonstrated that expression of V600EBraf in mature mouse melanocytes induces melanoma. Here, we show that expression of V600EBraf using the tyrosinase promoter leads to an unexpected embryonic lethality, with the animals dying before, at, or shortly after birth. The mice suffer from a range of developmental defects in the skin, the brain, the eyes and the heart, tissues that are normally colonized by melanocytes. We show that the V600EBraf expressing cells are potential melanocytic precursors that are fully transformed, suggesting that V600EBraf stimulates proliferation and blocks differentiation of these cells. Our data suggests that the presence of these cells in the organs that are normally occupied by melanocytes leads to severe developmental disruption, resulting in catastrophic defects and leading to death of the individual.  相似文献   

3.
Redefining the skin's pigmentary system with a novel tyrosinase assay   总被引:5,自引:0,他引:5  
In mammalian skin, melanin is produced by melanocytes and transferred to epithelial cells, with the epithelial cells thought to receive pigment only and not generate it. Melanin formation requires the enzyme tyrosinase, which catalyzes multiple reactions in the melanin biosynthetic pathway. Here, we reassess cutaneous melanogenesis using tyramide-based tyrosinase assay (TTA), a simple test for tyrosinase activity in situ. In the TTA procedure, tyrosinase reacts with biotinyl tyramide, causing the substrate to deposit near the enzyme. These biotinylated deposits are then visualized with streptavidin conjugated to a fluorescent dye. In the skin and eye, TTA was highly specific for tyrosinase and served as a sensitive indicator of pigment cell distribution and status. In clinical skin samples, the assay detected pigment cell defects, such as melanocytic nevi and vitiligo, providing confirmation of medical diagnoses. In murine skin, TTA identified a new tyrosinase-positive cell type--the medullary cells of the hair--providing the first example of cutaneous epithelial cells with a melanogenic activity. Presumably, the epithelial tyrosinase originates in melanocytes and is acquired by medullary cells during pigment transfer. As tyrosinase by itself can generate pigment from tyrosine, it is likely that medullary cells produce melanin de novo. Thus, we propose that melanocytes convert medullary cells into pigment cells by transfer of the melanogenic apparatus, an unusual mechanism of differentiation that expands the skin's pigmentary system.  相似文献   

4.
Tyrosinase is the key enzyme in melanin synthesis, and is expressed in the pigment epithelium of the retina, a cell layer derived from the optic cup; and in neural crest-derived melanocytes of skin, hair follicle, choroid, and iris. The tyrosinase gene has been cloned and shown to map to the well-characterized c-locus (albino locus) of the mouse. Subsequent studies demonstrated that a functional tyrosinase minigene was able to rescue the albino phenotype in transgenic mice. The transgene was expressed in a cell type-specific manner in skin and eye. During development of the mouse, the tyrosinase gene is expressed in the pigment epithelium of the retina as early as day 10.5 of gestation. In the hair follicle, tyrosinase gene expression is detected from day 16.5 onwards. This cell-type–specific expression is largely reproduced in transgenic mice. Our results suggest that sequences in the immediate vicinity of the mouse tyrosinase gene are sufficient to provide cell type-specificity and developmental regulation in melanocytes and the pigment epithelium.  相似文献   

5.
The monoclonal antibody FB-2 recognizes the antigen p120-kDa protein (p120), associated with the nucleolar matrix. p120 has originally been reported as expressed and detectable in malignant and non-neoplastic proliferating cells, but not in most normal resting tissues and benign tumours. In the present study, a reliable immunostaining method was used to detect p120 on formalin-fixed, paraffin wax-embedded tissue, testing it on 148 samples from different neoplastic and non-neoplastic tissues from different organs (breast, colon, lung, prostate, bladder, lymph nodes, skin, tongue and liver). The immunostaining was performed after the application of a specific antigen-unmasking protocol based on six consecutive cycles of microwave oven heating. Under these retrieval conditions, p120 antigen was clearly detectable, not only in hyperplastic and malignant cells, but also in stromal and normal non-proliferating cells of all the tissues evaluated. Our results show that the nucleolar protein p120 can be detected by routine immunohistochemistry in formalin-fixed, paraffin-embedded tissue and is expressed in all nucleated cells under any biological condition. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

6.
Regulation of tyrosinase in human melanocytes grown in culture   总被引:12,自引:2,他引:10       下载免费PDF全文
Tyrosinase, the enzyme that controls the synthesis of melanin, is a unique product of melanocytes. Normal and malignant human melanocytes grown in culture were used to study the factors that regulate the expression of tyrosinase. Immunoprecipitation experiments showed that newly synthesized tyrosinase appeared as a protein with an apparent molecular weight of 70,000 that was processed to a protein with an apparent molecular weight of 80,000. Neither tunicamycin nor 2-deoxy-D- glucose inhibited this conversion, suggesting that O-glycosylation is the major biochemical event in the posttranslational modification of tyrosinase. Agents that stimulated the proliferation of normal melanocytes also stimulated tyrosinase activity. Melanocytes with low levels of tyrosinase activity synthesized less tyrosinase, processed the enzyme more slowly, and degraded it more rapidly than melanocytes with high levels of tyrosinase activity. We conclude that tyrosinase activity in cultures of human melanocytes derived from different donors is determined predominantly by its abundance.  相似文献   

7.
In this article, some of the advantages and limitations of DNA microarray technologies for gene expression profiling are summarized. As a model experiment, DermArray DNA microarrays were utilized to identify potential biomarkers of cultured normal human melanocytes in two different experimental comparisons. In the first case, melanocyte RNA was compared with vastly dissimilar non-melanocytic RNA samples of normal skin keratinocytes and fibroblasts. In the second case, melanocyte RNA was compared with a primary cutaneous melanoma line (MS7) and a metastatic melanoma cell line (SKMel-28). The alternative approaches provide dramatically different lists of 'normal melanocyte' biomarkers. The most robust biomarkers were identified using principal component analysis bioinformatic methods related to likelihood ratios. Only three of 25 robust biomarkers in the melanocyte-proximal study (i.e. melanocytes vs. melanoma cells) were coincidentally identified in the melanocyte-distal study (i.e. melanocytes vs. non-melanocytic cells). Selected up-regulated biomarkers of melanocytes (i.e. TRP-1, melan-A/MART-1, silver/Pmel17, and nidogen-2) were validated by qRT-PCR. Some of the melanocytic biomarkers identified here may be useful in molecular diagnostics, as potential molecular targets for drug discovery, and for understanding the biochemistry of melanocytic cells.  相似文献   

8.
9.
Tyrosinase induction in murine malignant melanocytes by alpha MSH is well known, but its molecular basis has not been characterized. Treatment of B16 melanoma cells with theophylline or alpha MSH mediates a larger induction of tyrosine hydroxylase than of dopa oxidase activity in total cell extracts, and in the melanosomal and microsomal fractions. No evidence for the modulation of a tyrosinase effector was found. SDS-PAGE and specific activity stain demonstrated two forms of tyrosinase, with different degrees of induction by theophylline. These results agree with the recent proposal that two tyrosinases, encoded by different genes, are present in murine melanocytes.  相似文献   

10.
We identified a malignant lymphoma infiltrating the lung, liver, kidney, mesenteric lymph nodes, and eye as the cause of death in a male West Indian manatee (Trichechus manatus). Diagnosis was based on gross, histopathologic, and immunohistochemical studies. Tissue samples from ten organs were included in a tissue microarray and sections from this array were subjected to immunohistochemical staining. The cytoplasm of the neoplastic lymphocytes identified in six organs was positive for CD3, a marker for T-cell differentiation. The neoplastic cells were negative for CD79alpha, a marker for B-cell differentiation. The cause of this neoplasm was not determined. This is the first report of malignant lymphoma in the mammal order Sirenia.  相似文献   

11.
Tyrosinase, the key gene in melanin pigment synthesis, is tissue-specifically expressed in melanocytic cells. Expression of this gene is regulated by various hormones, carcinogens, and environmental factors. The molecular basis underlying tyrosinase gene regulation is still not clear. In this report, we present the effects of tumor suppressor p53 protein on tyrosinase gene expression and melanin synthesis in human melanoma. After stable transfection of wild type p53 expression plasmid into a highly pigmented melanoma cell line, overexpression of wt p53 suppressed the pigmentation of the melanoma cells. The loss of pigmentation was associated with the loss of endogenous tyrosinase expression at the activity and mRNA levels. In order to determine whether the p53 repression of tyrosinase mRNA involved modulation of tyrosinase promoter activity, transient transfection approaches involving p53 expression plasmid and construct containing chloramphenicol acetyl transferase (CAT) reporter gene linked to 270 bp tissue-specific tyrosinase promoter have been used. p53 specifically repressed CAT gene expression from the tyrosinase promoter and not from the Rous sarcoma virus promoter. These data suggest that in human melanoma p53 down-regulates the tissue-specific expression of tyrosinase gene and subsequent melanin synthesis.  相似文献   

12.
Tyrosinase, which catalyzes both the hydroxylation of tyrosine and consequent oxidation of L-DOPA to form melanin in melanocytes, is also expressed in the brain, and oxidizes L-DOPA and dopamine. Replacement of dopamine synthesis by tyrosinase was reported in tyrosine hydroxylase null mice. To examine the potential benefits of autograft cell transplantation for patients with Parkinson’s disease, tyrosinase-producing cells including melanocytes, were transplanted into the striatum of hemi-parkinsonian model rats or mice lesioned with 6-hydroxydopamine. Marked improvement in apomorphine-induced rotation was noted at day 40 after intrastriatal melanoma cell transplantation. Transplantation of tyrosinase cDNA-transfected hepatoma cells, which constitutively produce L-DOPA, resulted in marked amelioration of the asymmetric apomorphine-induced rotation in hemi-parkinsonian mice and the effect was present up to 2 months. Moreover, parkinsonian mice transplanted with melanocytes from the back skin of black newborn mice, but not from albino mice, showed marked improvement in the apomorphine-induced rotation behavior up to 3 months after the transplantation. Dopamine-positive signals were seen around the surviving transplants in these experiments. Taken together with previous studies showing dopamine synthesis and metabolism by tyrosinase, these results highlight therapeutic potential of intrastriatal autograft cell transplantation of melanocytes in patients with Parkinson’s disease.  相似文献   

13.
14.
15.
Kim IS  Kim ER  Nam HJ  Chin MO  Moon YH  Oh MR  Yeo UC  Song SM  Kim JS  Uhm MR  Beck NS  Jin DK 《Hormone research》1999,52(5):235-240
McCune-Albright syndrome (MAS) is a sporadic disease characterized by café-au-lait spots, polyostotic fibrous dysplasia and hyperfunctional endocrinopathies. To elucidate the mechanism of skin pigmentation, melanocytes, keratinocytes and fibroblasts were primary cultured from the café-au-lait spot of a MAS patient. Then, mutational analysis and morphologic evaluation were performed. Also, cAMP level and tyrosinase gene expression in cultured cells were determined. Only Gsalpha mutation was found in affected melanocytes and the cAMP level in affected melanocytes was higher than that of normal melanocytes. The mRNA expression of tyrosinase gene was increased in the affected melanocytes. This study suggests that skin pigmentation of MAS results from activating mutation of Gsalpha in melanocytes and the mechanism involves the c-AMP-mediated tyrosinase gene activation.  相似文献   

16.
Pigmented tissues from bovine eye were used as a source for isolation of tyrosinase from normal melanocytes. Tyrosinase is highly hydrophobic and the isolation procedure is mainly based on the use of hydrophobic interaction chromatography. The bovine enzyme is, in contrast to the human melanoma tyrosinase, mainly soluble. The predominant part of the ocular enzyme from cow has a molecular weight and isoelectric behavior similar to that of the soluble tyrosinase in the human melanoma cells. The N-terminal amino acid sequence of isolated bovine tyrosinase was determined by automated Edman degradation. The N-terminal amino acid sequence from normal bovine tyrosinase was identical to the sequence of an N-terminal region of mouse melanoma tyrosinase predicted from a c-DNA clone by Kwon et al. (1988). The amino acid sequence of bovine tyrosinase shows homology to that of human tyrosinase (Wittbjer et al., 1989), but three amino acids of the 16 residues determined by us differed. Histidine was the N-terminal amino acid.  相似文献   

17.
Tyrosinase is a glycoprotein responsible for the synthesis of melanin in melanocytes. A large number of mutations have been identified in tyrosinase, with many leading to its misfolding, endoplasmic reticulum (ER) retention, and degradation. Here we describe the folding and maturation of human tyrosinase (TYR) using an in vitro translation system coupled with ER-derived microsomes or with semipermeabilized cells, as an intact ER source. TYR remained misfolded as determined by its sensitivity to trypsin digestion and its persistent interaction with the ER resident lectin chaperones calnexin and calreticulin when produced in ER-derived microsomes or nonmelanocytic semipermeabilized cells. However, when TYR was translocated into semipermeabilized melanocytes, chaperone interactions were transient, maturation progressed to a trypsin-resistant state, and a TYR homodimer was formed. The use of semipermeabilized mouse melanocytes defective for tyrosinase or other melanocyte-specific proteins as the ER source indicated that proper TYR maturation and oligomerization were greatly aided by the presence of wild type tyrosinase and tyrosinase-related protein 1. These findings suggested that oligomerization is a step in proper TYR maturation within the ER that requires melanocyte-specific factors.  相似文献   

18.
19.
20.
In the vertebrate embryo, melanocytes arise from the neural crest, migrate to and colonize the basal layer within the skin and skin appendages. Post-migratory melanocytes are securely attached to the basement membrane, and their morphology, growth, adhesion, and migration are under control of neighboring keratinocytes. Melanoma is a malignant tumor originated from melanocytes or their progenitor cells. During melanocyte transformation and melanoma progression, melanocytes lose their interactions with keratinocytes, resulting in uncontrolled proliferation and invasion of the malignant cells. Melanoma cells at the advanced stages often lack melanocytic features and resemble multipotent progenitors, which are a potential melanocyte reservoir in human skin. In this mini-review, we will summarize findings on cell-cell interactions that are responsible for normal melanocyte homeostasis, stem cell self-renewal, and differentiation. Our ultimate goal is to define molecules and pathways, which are essential for normal cell-cell interactions but deregulated in melanoma formation and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号