首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of our knowledge of the mammalian tyrosinase related protein (TRP) activities is derived from studies using murine melanoma models, such as B16 or Cloudman S-91 melanocytes. Owing to the high degree of homology between the murine and human enzymes, it has been assumed that their kinetic behavior could be similar. However, the protein sequences at the metal binding sites of the murine and human enzymes show some differences of possible functional relevance. These differences are more significant in the metal-A site than in the metal-B site. By using three human melanoma cell lines (HBL, SCL, and BEU), we have studied the catalytic abilities of the human melanogenic enzymes in comparison to those obtained for the counterpart murine enzymes isolated from B16 melanoma. We have found that TRP2 extracted from all cell lines show dopachrome tautomerase activity, although the activity levels in human malignant melanocytes are much lower than in mouse cells. Reconstitution experiments of the human enzyme indicate that TRP2 has Zn at its metal binding-sites. Although mouse tyrosinase does not show DHICA oxidase activity, and this step of the melanogenesis pathway is specifically catalyzed by mouse TRP1, the human enzyme seems to recognize carboxylated indoles. Thus, human tyrosinase could display some residual DHICA oxidase activity, and the function of human TRP1 could differ from that of the murine protein. Attempts to clarify the nature of the metal cofactor in TRP1 were unsuccessful. The enzyme contains mostly Fe and Cu, but the reconstitution of the enzymatic activity from the apoprotein with these ions was not possible.  相似文献   

2.
Melanogenesis in melanoma cells can be enhanced by psoralens in the absence of UV light. Melanin biosynthesis is regulated by a number of melanocyte-specific proteins, including tyrosinase, DOPAchrome tautomerase (DCT), and tyrosinase-related protein-1 (TRP-1, gp75). To get more insight on the molecular mechanisms involved in psoralens-induced melanogenesis, we determined tyrosinase and DCT activities as well as mRNA and protein levels of tyrosinase, DCT, and TRP-1 in S91 mouse melanoma cells treated by 5-MOP. High concentration of 5-MOP (5 × 10-5 M) induced a time-dependent increase of tyrosinase activity and melanin content, which was correlated to an increase of both mRNA and protein levels of tyrosinase. These results demonstrate that the 5-MOP stimulation of melanogenesis is related to increased tyrosinase synthesis. In addition, 5-MOP stimulated TRP-1 synthesis and induced a dose-dependent decrease of DCT activity without any modification in the expression of the protein. We explored then the signalling pathways involved in 5-MOP-induced melanogenesis and, particularly, the role of cyclic AMP and protein kinase C (PKC). A small stimulation of cyclic AMP production was observed in presence of 5-MOP. Furthermore, 1-oleoyl-2-acetylglycerol (OAG), a PKC activator, potentiated the 5-MOP stimulation of tyrosinase activity, while calphostin, a specific PKC inhibitor, inhibited the 5-MOP induction of tyrosinase activity. Phorbol-myristate acetate (PMA), described as a strong activator of PKC, inhibited also the effect of 5-MOP when used at long term. Taken together, these results demonstrate that in murine melanoma cells 5-MOP stimulates melanogenesis by increasing activity and synthesis of tyrosinase. Tyrosinase and TRP-1 expression are coordinately regulated by 5-MOP Furthermore, a negative correlation between melanogenesis and DCT activity was observed under 5-MOP stimulation. At least, PKA and PKC systems appear to play an important role in the melanogenic effect of 5-MOP.  相似文献   

3.
A high percentage of the total tyrosinase found in Harding-Passey mouse melanoma occurs as a soluble form. This paper shows that melanosomal tyrosinase can be solubilized by several endogenous proteases to yield active tyrosinase. This enzyme, once proteolytically solubilized, can be further degraded, leading to enzyme inactivation. The nature and specificity of the main proteases involved in the solubilization process change depending on the size and necrosis stage of the tumour. Cathepsin B could be the main protease responsible for the solubilization in small tumours (less than 0.5 g). Large tumours are rich in necrotic cells, and cathepsin D and serine-proteases are the main hydrolytic enzymes involved in the proteolytic action on melanosomes. These results support the view that the high activity of tyrosinase found in the soluble fraction of malignant melanoma is mainly an artefact resulting from degradation of melanosomes by a variety of endogenous proteases, rather than the result of the actual occurrence of high levels of an independent cytosolic isozyme.  相似文献   

4.
A study of the enzymes functioning in murine melanogenesis was carried out on tissue homogenates of the black mouse. Several major points were resolved: (a) while the enzyme peroxidase is capable of converting tyrosine to melanin in vitro, it is not responsible for observed melanogenesis in the mouse, (b) a proteolytic activation system for tyrosinase, such as that described for amphibian skin, does not seem to function in mammalian tyrosinase activation, and (c) tyrosinase activity in normal murine tissues can be stimulated with a variety of treatments.  相似文献   

5.
The effect of several polyamines on the activity of tyrosinase from different sources has been studied. Diaminoethane, 1,3-diaminopropane and putrescine activated tyrosinase from Harding-Passey mouse melanoma but did not activate frog epidermis or mushroom tyrosinases. 1,3-diaminopropane was the strongest activator (Ka = 0.23 mM). The activation was saturable and dependent on the ionic strength. Cadaverine, 1,6-diaminohexane and spermidine had no effect on any tyrosinase. However, spermine inhibited melanoma tyrosinase more than the mushroom and frog epidermis enzymes. These results show that the effect of polyamines on mammalian tyrosinase is due to direct enzyme-oligoamine interactions rather than to a nonspecific action on L-dopa oxidation products, and suggest that physiological polyamines might play a modulatory role on mammalian melanogenesis.  相似文献   

6.
We studied the pigmentary activity of the peptides gamma 1, gamma 2 and gamma 3 melanocyte stimulating hormone (MSH), which differ in the structure of their C-termini, using hamster and mouse melanoma cell lines responsive to beta-MSH by increasing tyrosinase activity. Gamma 1-MSH alone or in combination with beta-MSH had no effect on either cell line. Gamma 2-MSH alone was biologically inactive but potentiated beta-MSH stimulation of tyrosinase activity. Gamma 3-MSH at high concentration (10 microM) induced tyrosinase activity and dendrite formation in the hamster melanoma line. When added together with beta-MSH, gamma 3-MSH partially inhibited the tyrosinase activity response to beta-MSH. Thus, gamma-MSH peptides have low intrinsic melanotropic activity in mammalian melanoma cells; the specific pigmentary responses appear to be affected by the structure of the C-terminal portion.  相似文献   

7.
Transfer of tyrosinase to melanosomes in Harding-Passey mouse melanoma   总被引:3,自引:0,他引:3  
The transfer of tyrosinase from microsomes into melanosomes, without passing through the cytosol in the Harding-Passey mouse melanoma cell, was confirmed by experiments carried out using a combination of radioisotope tracer techniques and immunoprecipitation. 3H-Labeled amino acid incorporation into tyrosinase present in the microsome, melanosome, and soluble fractions confirmed the precursor-product relationship of the enzyme in the microsome fraction and in the melanosome fraction. However, two forms of the enzyme, Ts1- and Ts2-tyrosinase, separated from the soluble fraction by polyacrylamide gel electrophoresis, were shown to play no role in the transfer since little or no incorporation of radioactivity into tyrosinase in this fraction was found. It is suggested that most tyrosinase observed in the soluble fraction does not leak from the melanosomes or the microsomes during homogenization, but comes from necrotic tumor cells. It appears that melanosomal and microsomal tyrosinase might be released from the membrane of necrotic cells modified by various degradation enzymes, considering the data on the recovery of tyrosinase from the soluble fraction, where one-third of total enzyme activity in the postnuclear fraction could not be increased, even when the postnuclear fraction of the tumor was further homogenized radically.  相似文献   

8.
Two forms of tyrosinase from B16 mouse melanoma were identified by nonreducing SDS-PAGE after solubilization of crude melanosomal preparations with the nonionic detergent Brij 35. These forms, named LEMT and HEMT (low and high electrophoretic mobility tyrosinase, respectively), were purified by a combination of differential detergent extraction and chromatographic techniques. They displayed tyrosine hydroxylase and dopa oxidase activity and were stereospecific and sensitive to phenylthiourea, proving that they are true tyrosinases. However, based on its kinetic parameters, HEMT is a much more efficient enzyme, Immunoprecipitation and Western blots performed with the specific antibody αPEP1, directed against the b protein carboxyl terminus, suggested that LEMT is identical to the b protein. Both forms of tyrosinase were noncompetitively inhibited by Ca2+ at physiologically relevant concentrations. However, the b protein was apparently more susceptible, since maximal inhibition was reached at lower Ca2+ concentrations for LEMT. Moreover, binding of Ca2+ to the tyrosinases resulted in a noticeable thermal destabilization of the enzymes, which was also more pronounced for LEMT.  相似文献   

9.
Melanogenesis in mammalian pigment cells is regulated by changes in the activity of tyrosinase, the rate-limiting enzyme for melanin synthesis. Because recent evidence suggests that this enzyme may exist in pigment cells in both active and inactive stages, a competitive enzyme-linked immunoadsorbent assay (ELISA) was developed to compare tyrosinase levels in amelanotic and melanotic melanoma cell clones. The melanotic cell line used for this study, MEL-11A, had basal tyrosinase levels approximately 40 times that of the amelanotic cell line, AM-7. Both cell lines responded to melanocyte-stimulating hormone by demonstrating large increases in tyrosinase activity. For competitive ELISA analysis of tyrosinase levels in these two clones, microtiter plates were coated with purified tyrosinase, and trypsinized cell extracts were tested for their ability to compete with bound tyrosinase for antibody binding. Although tyrosinase activity in the amelanotic clone was 1/40 that of the melanotic clone, immunoreactive tyrosinase levels in AM-7 cells were found to be approximately one-half that present in the melanotic clone. Additional evidence for the presence of an inactive (or at least, catalytically less active) enzyme in AM-7 cells was obtained from immunotitration analysis of tyrosinase in cell extracts from both cell lines. These results suggest that at least some amelanotic melanoma cells may contain significant levels of catalytically inactive tyrosinase molecules and that the level of pigmentation in mammalian melanocytes may be regulated by a tyrosinase activation process.  相似文献   

10.
11.
New active sites can be introduced into naturally occurring enzymes by the chemical modification of specific amino acid residues in concert with genetic techniques. Chemical strategies have had a significant impact in the field of enzyme design such as modifying the selectivity and catalytic activity which is very different from those of the corresponding native enzymes. Thus, chemical modification has been exploited for the incorporation of active site binding analogs onto protein templates and for atom replacement in order to generate new functionality such as the conversion of a hydrolase into a peroxidase. The introduction of a coordination complex into a substrate binding pocket of trypsin could probably also be extended to various enzymes of significant therapeutic and biotechnological importance.

The aim of this study is the conversion of trypsin into a copper enzyme: tyrosinase by chemical modification. Tyrosinase is a biocatalyst (EC.1.14.18.1) containing two atoms of copper per active site with monooxygenase activity. The active site of trypsin (EC 3.4.21.4), a serine protease was chemically modified by copper (Cu+2) introduced p-aminobenzamidine (pABA- Cu+2: guanidine containing schiff base metal chelate) which exhibits affinity for the carboxylate group in the active site as trypsin-like inhibitor. Trypsin and the resultant semisynthetic enzyme preparation was analysed by means of its trypsin and catechol oxidase/tyrosinase activity. After chemical modification, trypsin-pABA-Cu+2 preparation lost 63% of its trypsin activity and gained tyrosinase/catechol oxidase activity. The kinetic properties (Kcat, Km, Kcat/Km), optimum pH and temperature of the trypsin-pABA-Cu+2 complex was also investigated.  相似文献   

12.
The effect of cysteine and glutathione on mammalian melanogenesis has been studied. It has been shown that their action is mediated by two different mechanisms. (a) The reaction of the thiol groups with dopaquinone after the tyrosinase-catalyzed oxidation of tyrosine and dopa. This mechanism leads to the formation of sulfhydryl-dopa conjugates and finally sulfur-containing pigments, phaeomelanins instead of eumelanins. This fact might produce an inhibition of melanogenesis due to the slower rate of chemical reactions involved in the polymerization of such thiol-conjugates when compared to that of indoles. (b) The direct interaction between the sulfhydryl compounds and the tyrosinase active site. This interaction may regulate the activity of the enzyme. It is shown that Harding-Passey mouse melanoma tyrosinase is more sensitive to sulfhydryl compounds than mushroom tyrosinase. Cysteine always produces an inhibition of the tyrosinase hydroxylase and dopa oxidase activities of melanoma tyrosinase, this inhibition becoming greater as the cysteine concentration increases. On the other hand, glutathione produces an activation of the tyrosine hydroxylase activity below 3 mM and an inhibition at higher concentrations. The limit between the enzymatic activation and inhibition appears at glutathione concentrations similar to the physiological levels of this compound found in melanocytes. Although the switch from eumelanogenesis to phaeomelanogenesis occurs at much lower concentrations of glutathione, taking into account these data it is discussed that this sulfhydryl compound may regulate not only the type but also the amount of melanin formed inside melanocytes.  相似文献   

13.
Skin injuries, congenital lesions, melasma, Addison's disease and many pigment abnormalities prompt us to search for an effective whitening agent. Ideal whitening agent is a natural compound that can inhibit melanogenesis and has no cytotoxic effects. In a previous study, we have developed an optimum method for the production and characterization of ectoine from a halophilic bacterium isolated from a salt environment in Taiwan was identified as Marinococcus sp. In the present study, we screened the whitening properties of the biosynthesized ectoine using mouse and human melanoma cell lines, B16-F0 and A2058. Here, we examined the cell viabilities of melanoma cells after ectoine treatment at various concentrations up to 500 μM. Also, we addressed the melanin synthesis of melanoma cells after treatment with ectoine. The inhibitory effects of ectoine on tyrosinase activity were assessed in both mushroom tyrosinase and cellular tyrosinase. Furthermore, we investigated the type of inhibition of mushroom tyrosinase using Lineweaver–Burk enzyme kinetic. The melanogenesis-related gene expression (tyrosinase, TRP1, TRP2 and MITF) and their protein secretion were determined by the assays of quantitative real-time PCR and western blots, respectively. Our results demonstrated that ectoine is a safe and effective whitening agent, inhibited melanin synthesis, reduced both mushroom tyrosinase and cellular tyrosinase, and had various inhibitory effects on the expressions of melanogenesis-related genes and secretion of proteins in mouse and human melanoma cell lines. Thus, we suggest that ectoine can serve as a useful and safe new agent in cosmetic and clinical applications.  相似文献   

14.
The rationale for melanoma specific dihydroxybenzene containing antitumor agents is based in part upon the ability of the enzyme tyrosinase to oxidize these pro drugs to toxic intermediates. In situ tyrosinase activity was demonstrated to be affected by both cell density and time from plating in pigmented melanoma cells. Phenylthiourea, which completely inhibited tyrosinase activity with minimal cytotoxicity was found to block the growth inhibitory activity of the antitumor dopamine analog 3,4-dihydroxybenzylamine (3,4-DHBA) (NSC 263475). The antioxidant dithioerythritol was also found to inhibit tyrosinase activity and to block the growth inhibitory effects of 3,4-DHBA in pigmented melanoma cell lines. Buthionine sulfoximine (BSO) was shown to be cytotoxic to melanoma cells and its growth inhibitory effects appears to correlate with tyrosinase levels. Furthermore, BSO was shown to potentiate the growth inhibitory effects of 3,4-DHBA on marginally pigmented human melanoma cell lines.  相似文献   

15.
16.
Tyrosinase activity and abundance in Cloudman melanoma cells   总被引:4,自引:0,他引:4  
Rabbit anti-tyrosinase antibodies were used to study the abundance, processing, and degradation of tyrosinase in murine (Cloudman) melanoma cells. The polyclonal antibodies precipitated low-molecular-weight (68,000 and 70,000) and high-molecular-weight (78,000 and 80,000) tyrosinases that had a precursor-product relationship. Cells with high basal tyrosinase activity had high levels of newly synthesized tyrosinase. Cells with low tyrosinase activity synthesized less tyrosinase and degraded the enzyme at a faster rate than cells with high tyrosinase activity. Melanotropin (melanocyte stimulating hormone), dibutyryl cyclic adenosine monophosphate, and isobutylmethylxanthine caused an increase in the abundance of newly synthesized tyrosinase that was directly proportional to the increase in enzyme activity. This enzyme was not a phosphoprotein. Other changes in the culture conditions that increased the level of tyrosinase activity increased the abundance of newly synthesized enzyme. It is thus concluded that the level of tyrosinase activity in Cloudman melanoma cells is a direct reflection of the abundance of enzyme protein.  相似文献   

17.
Results of hemacytometer cell counts and of tyrosinase measurements made by the Pomerantz method demonstrate that imidazole added to the medium of cultured B16 mouse melanoma cells can stimulate tyrosinase specific activity and inhibit cell division. These effects are greater than with adenosine 3',5' cyclic monophosphate (cAMP) or the cAMP-phosphodiesterase inhibitor theophylline. The effects of imidazole on cell division and tyrosinase are enhanced by theophylline and antagonized by cAMP. Cyclic AMP-phosphodiesterase activity in cell-free extracts can be inhibited by theophylline and stimulated by imidazole. However, imidazole does not affect cAMP-phosphodiesterase specific activity in vivo, nor does it affect intracellular cAMP concentrations as determined by competitive protein-binding assays. In contrast, the specific activity of cAMP-phosphodiesterase in vivo is stimulated by cAMP and theophylline, supporting the hypothesis that cAMP and agents which increase intracellular cAMP concentrations induce the synthesis of cAMP-phosphodiesterase. Studies with actinomycin-D and cycloheximide support the hypothesis that cAMP can also mediate posttranslational activation of tyrosinase. Similar experiments suggest that imidazole, or a derivative thereof, can induce the synthesis of tyrosinase at the pretranslational level of control. We hypothesize that this type of regulation (pretranslational) by imidazole may define a role for the concept of "Metabolite Gene Regulation" (MGR), in mammalian cells.  相似文献   

18.
Tyrosinase is a rate-limiting enzyme in mammalian melanogenesis, and is known as a glycoprotein. Post-translational processing of mammalian tyrosinase is required for its folding, sorting, and for enzymatic activity. Here we show for the first time that the mammalian tyrosinase has beta1,6-branched N-glycan structure that can be recognized by binding with specific lectin Leukoagglutinating phytohematoagglutinin (L-PHA). Further, this specific glycoconjugate structure has been shown to have a function relationship in melanin synthesis.  相似文献   

19.
Calcium ionophore A23187 lowers basal levels of tyrosinase and inhibits the MSH-induced increase in tyrosinase in Cloudman S-91 mouse melanoma cell cultures. lonophore at a concentration of 10–6 g/ml causes a 50% reduction in basal levels of tyrosinase and inhibits the MSH stimulated level of enzyme. lonophore A23187 also inhibits the PGEi mediated stimulation of tyrosinase, as well as the rise in enzyme activity observed in cells exposed to either theophylline (1 mM) or dbcAMP (10–4M). lonophore does not affect basal levels of cyclic AMP nor the elevated levels produced by either MSH or PGEi, suggesting then, that the antagonistic activity of A23187 is localized to a point in the pathway of tyrosinase activation distal to the formation of cAMP. lonophore causes a rapid and marked (> 50%) inhibition of cellular protein synthesis and it is possible that this calcium mobilizing compound may exert its inhibitory effects on tyrosinase activity by causing a general reduction in cellular translation. Since the inhibition of protein synthesis occurs in cells exposed to ionophore in either the presence or absence of calcium in the medium, it seems, likely that the ionophore may exert its effects by causing the release of calcium from intracellular sites.  相似文献   

20.
Des-, mono-, and diacetylated melanotropin (des-, mono-, and di-Ac MSH, respectively) were compared for their dose-related effects on content of adenosine 3':5'-monophosphate (cAMP) and tyrosinase activity in the Cloudman S91 mouse melanoma tumor. Des-Ac MSH was more potent than the acetylated forms of MSH at increasing cellular levels of cAMP; mono- and di-Ac MSHs, however, were more potent than des-Ac MSH at elevating the activity of the enzyme, tyrosinase. Lysine-gamma1 MSH, a melanotropin from the amino terminus of pro-opiomelanocortin, exhibited slight stimulatory effects on tyrosinase and these actions were less than additive to those of mono-Ac MSH. Unlike their actions on amphibian skin-darkening or in mammalian behavior, neither beta-endorphin1-31 nor its derivatives, N-Ac-beta-endorphin1-27 or beta-endorphin30-31 (glycylglutamine), exhibited any influence on tyrosinase activity evoked by mono-Ac MSH in the tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号