首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies in plant populations have found that environmental heterogeneity and phenotypic selection vary at local spatial scales. In this study, I ask if there is evolutionary change in response to environmental heterogeneity and, if so, whether the response occurs for characters or character plasticities. I used vegetative clones of Mimulus guttatus to create replicate populations of 75 genotypes. These populations were planted into the natural habitat where they differed in mean growth, flowering phenology, and life span. This phenotypic variation was used to define selective environments. There was variation in fitness (flower production) among genotypes across all planting sites and in genotype response to the selective environment. Offspring from each site were grown in the greenhouse in two water treatments. Because each population initially had the same genetic composition, variation in the progeny between selective environments reveals either evolutionary change in response to environmental heterogeneity or environmental maternal effects. Plants from experimental sites that flowered earlier, had shorter life spans and were less productive, produced offspring that had more flowers, on average, and were less plastic in vegetative allocation than offspring of longer-lived plants from high-productivity areas. However, environmental maternal effects masked phenotypic differences in flower production. Therefore, although there was evidence of genetic differentiation in both life-history characters and their plasticities in response to small-scale environmental heterogeneity, environmental maternal effects may slow evolutionary change. Response to local-scale selective regimes suggests that environmental heterogeneity and local variation in phenotypic selection may act to maintain genetic variation.  相似文献   

2.
Adaptive phenotypic plasticity is the predicted evolutionary response to fine-grained fluctuation in major environmental factors, such as soil moisture in plant habitats. This study examines genotypes from two natural populations of Polygonum persicaria, one from a relatively homogeneous, moderately moist site, and one from a site in which severe drought and root flooding occur within single growth seasons. Norms of reaction (phenotypic response curves) were determined for a random sample of eight and ten cloned genotypes, respectively, from each of the populations over a controlled moisture gradient ranging from drought to flooding.  相似文献   

3.
In variable environments, selection should favor generalists that maintain fitness across a range of conditions. However, costs of adaptation may generate fitness trade‐offs and lead to some compromise between specialization and generalization that maximizes fitness. Here, we evaluate the evolution of specialization and generalization in 20 populations of Drosophila melanogaster experimentally evolved in constant and variable thermal environments for 3 years. We developed genotypes from each population at two temperatures after which we measured fecundity across eight temperatures. We predicted that constant environments would select for thermal specialists and that variable environments would select for thermal generalists. Contrary to our predictions, specialists and generalists did not evolve in constant and spatially variable environments, respectively. However, temporal variation produced a type of generalist that has rarely been considered by theoretical models of developmental plasticity. Specifically, genotypes from the temporally variable selective environment were more fecund across all temperatures than were genotypes from other environments. These patterns suggest certain allelic effects and should inspire new directions for modeling adaptation to fluctuating environments.  相似文献   

4.
Extinction is ubiquitous in natural systems and the ultimate fate of all biological populations. However, the factors that contribute to population extinction are still poorly understood, particularly genetic diversity and composition. A laboratory experiment was conducted to examine the influences of environmental variation and genotype diversity on persistence in experimental Daphnia magna populations. Populations were initiated in two blocks with one, two, three, or six randomly selected and equally represented genotypes, fed and checked for extinction daily, and censused twice weekly over a period of 170 days. Our results show no evidence for an effect of the number of genotypes in a population on extinction hazard. Environmental variation had a strong effect on hazards in both experimental blocks, but the direction of the effect differed between blocks. In the first block, variable environments hastened extinction, while in the second block, hazards were reduced under variable food input. This occurred despite greater fluctuations in population size in variable environments in the second block of our experiment. Our results conflict with previous studies, where environmental variation consistently increased extinction risk. They are also at odds with previous studies in other systems that documented significant effects of genetic diversity on population persistence. We speculate that the lack of sexual reproduction, or the phenotypic similarity among our experimental lines, might underlie the lack of a significant effect of genotype diversity in our study.  相似文献   

5.
Many biotic and abiotic variables influence the dispersal and distribution of organisms. Temperature has a major role in determining these patterns because it changes daily, seasonally and spatially, and these fluctuations have a significant impact on an organism's behaviour and fitness. Most ecologically relevant phenotypes that are adaptive are also complex and thus they are influenced by many underlying loci that interact with the environment. In this study, we quantified the degree of thermal phenotypic plasticity within and among populations by measuring chill‐coma recovery times of lines reared from egg to adult at two different environmental temperatures. We used sixty genotypes from six natural populations of Drosophila melanogaster sampled along a latitudinal gradient in South America. We found significant variation in thermal plasticity both within and among populations. All populations exhibit a cold acclimation response, with flies reared at lower temperatures having increased resistance to cold. We tested a series of environmental parameters against the variation in population mean thermal plasticity and discovered the mean thermal plasticity was significantly correlated with altitude of origin of the population. Pairing our data with previous experiments on viability fitness assays in the same populations in fixed and variable environments suggests an adaptive role of this thermal plasticity in variable laboratory environments. Altogether, these data demonstrate abundant variation in adaptive thermal plasticity within and among populations.  相似文献   

6.
 In this paper we compare mean values, heritability estimates, coefficient of genetic variation, and genetic correlations among several fitness components of two natural populations of a selfing plant species, Medicago truncatula L. It is shown that the population that had been found most polymorphic for molecular markers in a previous study was also the most variable for quantitative characters. Depending on the traits, the larger heritabilities in this population were due to either larger coefficients of genetic variances or smaller coefficients of environmental variances. Whereas genetic and phenotypic correlation matrices were very similar within each population, they were quite different between populations. In particular, although a positive correlation between age and size at maturity was found in both populations, the correlation between age at maturity and reproductive success was negative in the more variable population (late flowering plant, with a larger size at flowering, produced fewer pods), whereas no correlation was observed in the less variable population. We suggest that while in the less variable population all individuals have a high reproductive effort, several strategies coexist in the more variable population, with some early-flowering genotypes showing a high reproductive effort and other late-flowering genotypes showing a larger competitive ability through increased vegetative growth. Received: 25 June 1996 / Accepted: 11 October 1996  相似文献   

7.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

8.
We use a model population comprised of five genotypes of Phlox paniculata L. to investigate the contribution of individuals to the response breadth (niche) of the population on a light gradient and a moisture gradient. Analysis of within- and between-genotype components of population response width showed up to 20% of the response is due to between-genotype effects, depending upon the character considered. Since the only way a sedentary organism can deal with a variable environment is through plasticity of response, differences in levels of phenotypic plasticity between genotypes on the two resource gradients were also investigated. There was no correlation between level of phenotypic plasticity and success over a range of environments. Niche breadth calculated as Levins' (B) and Roughgarden's (w2) indicated that flowering, and hence sexual reproduction, was limited to a much narrower range of environments than was vegetative growth. We also found significant genotype × environment interactions on both gradients, indicating differences in genetic response to the environment.  相似文献   

9.
In this study we address the question of how much of the covariation among phenotypic characters observed in natural populations is adaptive. We examine covariation among a set of phenotypic characters that describe the wing-melanization pattern of Pieris butterflies. Previous functional analyses of thermoregulatory performance allow us to predict a priori whether and how different wing melanic characters should be correlated. We quantify and analyze the variation in the wing-melanization pattern within species for a series of Pieris populations from relatively cool environments in North America and compare these results with the predictions based on our adaptive hypothesis. We consider adaptive covariation both for biogeographic variation among populations and for seasonal polyphenism (phenotypic plasticity) within populations. Our hypothesis correctly predicts many of the qualitative features of covariation in melanization among major regions of the wings, at the level of biogeographic variation among populations, for both males and females of Pieris occidentalis. When within-population variation is considered, agreement with the adaptive predictions varies considerably in different populations for both P. occidentalis and P. napi males and females. Agreement for P. napi, particularly the females, is generally poorer than for P. occidentalis. In both species, there is a consistent difference in melanization pattern between alpine and arctic sites; this difference is discussed in relation to the differences in the radiative environment between these two types of “cold” habitats. Our results suggest that some important aspects of phenotypic correlation among wing melanic characters in Pieris are adaptive. We emphasize the important distinction between covariation and co-occurrence of characters, and we discuss these results in relation to the extensive biogeographic variation and phenotypic plasticity (seasonal polyphenism) in Pieris wing-melanization patterns.  相似文献   

10.
The effects of high vs. low levels of endophytic fungi on the phenotypic plasticity of cloned genotypes were examined in perennial ryegrass (Lolium perenne L.). The objectives were to determine whether endophytic fungi influence plastic responses of host genotypes to variable soil nutrients and whether or not endophyte infection and host genotype interact to determine the extent of this plasticity. Twelve infected genotypes were cloned into ramets: half the ramets were treated with the systemic fungicide Benomyl to reduce or eliminate the endophyte, while the other half were untreated. Ramets of each genotype were subjected to high, medium, or low levels of nutrients in the greenhouse for 11 wk. Tiller number, leaf area, and leaf mass were determined after 11 and 25 wk. The fungicide significantly reduced the level of endophyte infection. Responses to nutrient conditions in relation to fungicide treatment were genotype specific: for some genotypes, high levels of endophytic fungi appeared to reduce plasticity, while for other genotypes the endophyte had no effect. The potential for microscopic symbionts to affect phenotypic plasticity in genetically variable populations has not often been recognized. However, the clandestine effects of symbionts on the plasticity of host genotypes could impact microevolutionary processes occurring within plant populations that occupy heterogeneous environments.  相似文献   

11.
Determining genetic variation at the DNA level within and between natural populations is important for understanding the role of natural selection on phenotypic traits, but many techniques of screening for genetic variation are either cost intensive, not sensitive enough or too labour‐ and time‐consuming. Here, we demonstrate high‐resolution melting analysis (HRMA) as a cost‐effective and powerful tool for screening variable target genes in natural populations. HRMA is based on monitoring the melting of PCR amplicons. Owing to saturating concentrations of a dye that binds at high concentrations to double‐stranded DNA, it is possible to genotype high numbers of samples rapidly and accurately. We analysed digestive trypsins of two Daphnia magna populations as an application example for HRMA. One population originated from a pond containing toxic cyanobacteria that possibly produce protease inhibitors and the other from a pond without such cyanobacteria. The hypothesis was that D. magna clones from ponds with cyanobacteria have undergone selection by these inhibitors, which has led to different trypsin alleles. We first sequenced pooled genomic PCR products of trypsins from both populations to identify variable DNA sequences of active trypsins. Second, we screened variable DNA sequences of each D. magna clone from both populations for single nucleotide polymorphisms via HRMA. The HRMA results revealed that both populations exhibited phenotypic differences in the analysed trypsins. Our results indicate that HRMA is a powerful genotyping tool for studying the variation of target genes in response to selection within and between natural Daphnia populations.  相似文献   

12.
Studies of predator–prey systems in both aquatic and terrestrial environments have shown that grazers structure the intraspecific diversity of prey species, given that the prey populations are phenotypically variable. Populations of phytoplankton have traditionally considered comprising only low intraspecific variation, hence selective grazing as a potentially structuring factor of both genetic and phenotypic diversity has not been comprehensively studied. In this study, we compared strain specific growth rates, production of polyunsaturated aldehydes, and chain length of the marine diatom Skeletonema marinoi in both grazer and non-grazer conditions by conducting monoclonal experiments. Additionally, a mesocosm experiment was performed with multiclonal experimental S. marinoi populations exposed to grazers at different levels of copepod concentration to test effects of grazer presence on diatom diversity in close to natural conditions. Our results show that distinct genotypes of a geographically restricted population exhibit variable phenotypic traits relevant to grazing interactions such as chain length and growth rates. Grazer presence affected clonal richness and evenness of multiclonal Skeletonema populations in the mesocosms, likely in conjunction with intrinsic interactions among the diatom strains. Only the production of polyunsaturated aldehydes was not affected by grazer presence. Our findings suggest that grazing can be an important factor structuring diatom population diversity in the sea and emphasize the importance of considering clonal differences when characterizing species and their role in nature.  相似文献   

13.
14.
Adaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia. We compared range‐wide patterns of genomic divergence in natural populations of this plant and searched for regions putatively affected by natural selection. Our results indicate that environmental adaptation followed complex genetic trajectories, affecting multiple loci, implying both the parallel recruitment of the same alleles and the divergence of completely different genomic regions across geography. An analysis of the biological functions of candidate genes suggests that adaptation to coastal environments may have occurred through the recruitment of different genes participating in similar processes. The relatively low genetic convergence that characterizes the parallel evolution of S. lautus forms suggests that evolution is more constrained at higher levels of biological organization.  相似文献   

15.
Twelve populations of Escherichia coli were founded from a single clone and propagated for 2000 generations in identical glucose-limited environments. During this time, the mean fitnesses of the evolving populations relative to their common ancestor improved greatly, but their fitnesses relative to one another diverged only slightly. Although the populations showed similar fitness increases, they may have done so by different underlying adaptations, or they may have diverged in other respects by random genetic drift. Therefore, we examined the relative fitnesses of independently derived genotypes in two other sugars, maltose and lactose, to determine whether they were homogeneous or heterogeneous in these environments. The genetic variation among the derived lines in fitness on maltose and lactose was more than 100-times greater than their variation in fitness on glucose. Moreover, the glucose-adapted genotypes, on average, showed significant adaptation to lactose, but not to maltose. That pathways for use of maltose and glucose are virtually identical in E. coli, except for their distinct mechanisms of uptake, suggests that the derived genotypes have adapted primarily by improved glucose transport. From consideration of the number of generations of divergence, the mutation rate in E. coli, and the proportion of its genome required for growth on maltose (but not glucose), we hypothesize that pleiotropy involving the selected alleles, rather than random genetic drift of alleles at other loci, was the major cause of the variation among the derived genotypes in fitness on these other sugars.  相似文献   

16.
The fitness of genotypes created by crossing strains of Chlamydomonas reinhardtii was measured in axenic pure culture in a set of chemically defined environments. There was substantial and highly significant genotype-by-environment interaction, with genetic correlations between environments averaging only about +0.1 for both r and K. Higher-order interactions with combinations of environmental factors appeared to be no less important than simple interactions with single factors. The importance of genotype-by-environment interaction increased with the number of environmental factors manipulated. The linear reaction norms of genotypic score on environmental mean score varied substantially among genotypes and often intersected. There was also some evidence that nonallelic genetic interactions were present, and varied among environments. The genetic correlation of r with K also varied among environments, being significantly negative in some but not in others. These results are similar in all important respects to those previously obtained with different species, and suggest that genotype-by-environment interaction is important at all genetic scales. It is argued that they provide empirical support for a general theory of diversity, the “Tangled Bank,” based on the different response of genotypes to the range of conditions found in heterogeneous natural environments.  相似文献   

17.
While it is universally recognised that environmental factors can cause phenotypic trait variation via phenotypic plasticity, the extent to which causal processes operate in the reverse direction has received less consideration. In fact individuals are often active agents in determining the environments, and hence the selective regimes, they experience. There are several important mechanisms by which this can occur, including habitat selection and niche construction, that are expected to result in phenotype–environment correlations (i.e. non-random assortment of phenotypes across heterogeneous environments). Here we highlight an additional mechanism – intraspecific competition for preferred environments – that may be widespread, and has implications for phenotypic evolution that are currently underappreciated. Under this mechanism, variation among individuals in traits determining their competitive ability leads to phenotype–environment correlation; more competitive phenotypes are able to acquire better patches. Based on a concise review of the empirical evidence we argue that competition-induced phenotype–environment correlations are likely to be common in natural populations before highlighting the major implications of this for studies of natural selection and microevolution. We focus particularly on two central issues. First, competition-induced phenotype–environment correlation leads to the expectation that positive feedback loops will amplify phenotypic and fitness variation among competing individuals. As a result of being able to acquire a better environment, winners gain more resources and even better phenotypes – at the expense of losers. The distinction between individual quality and environmental quality that is commonly made by researchers in evolutionary ecology thus becomes untenable. Second, if differences among individuals in competitive ability are underpinned by heritable traits, competition results in both genotype–environment correlations and an expectation of indirect genetic effects (IGEs) on resource-dependent life-history traits. Theory tells us that these IGEs will act as (partial) constraints, reducing the amount of genetic variance available to facilitate evolutionary adaptation. Failure to recognise this will lead to systematic overestimation of the adaptive potential of populations. To understand the importance of these issues for ecological and evolutionary processes in natural populations we therefore need to identify and quantify competition-induced phenotype–environment correlations in our study systems. We conclude that both fundamental and applied research will benefit from an improved understanding of when and how social competition causes non-random distribution of phenotypes, and genotypes, across heterogeneous environments.  相似文献   

18.
Phenotypes are the target of selection and affect the ability of organisms to persist in variable environments. Phenotypes can be influenced directly by genes and/or by phenotypic plasticity. The amphibian‐killing fungus Batrachochytrium dendrobatidis (Bd) has a global distribution, unusually broad host range, and high genetic diversity. Phenotypic plasticity may be an important process that allows this pathogen to infect hundreds of species in diverse environments. We quantified phenotypic variation of nine Bd genotypes from two Bd lineages (Global Pandemic Lineage [GPL] and Brazil) and a hybrid (GPL‐Brazil) grown at three temperatures (12, 18 and 24°C). We measured five functional traits including two morphological traits (zoospore and zoosporangium sizes) and three life history traits (carrying capacity, time to fastest growth and exponential growth rate) in a phylogenetic framework. Temperature caused highly plastic responses within each genotype, with all Bd genotypes showing phenotypic plasticity in at least three traits. Among genotypes, Bd generally showed the same direction of plastic response to temperature: larger zoosporangia, higher carrying capacity, longer time to fastest growth and slower exponential growth at lower temperatures. The exception was zoospore size, which was highly variable. Our findings indicate that Bd genotypes have evolved novel phenotypes through plastic responses to temperature over very short timescales. High phenotypic variability likely extends to other traits and may facilitate the large host range and rapid spread of Bd.  相似文献   

19.
Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome‐wide methylation profiling using methylation‐sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome‐wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors.  相似文献   

20.
Marine and freshwater phytoplankton populations often show large clonal diversity, which is in disagreement with clonal selection of the most vigorous genotype(s). Temporal fluctuation in selection pressures in variable environments is a leading explanation for maintenance of such genetic diversity. To test the influence of temperature as a selection force in continually (seasonally) changing aquatic systems we carried out reaction norms experiments on co‐occurring clonal genotypes of a ubiquitous diatom species, Asterionella formosa Hassall, across an environmentally relevant range of temperatures. We report within population genetic diversity and extensive diversity in genotype‐specific reaction norms in growth rates and cell size traits. Our results showed genotype by environment interactions, indicating that no genotype could outgrow all others across all temperature environments. Subsequently, we constructed a model to simulate the relative proportion of each genotype in a hypothetical population based on genotype and temperature‐specific population growth rates. This model was run with different seasonal temperature patterns. Our modeling exercise showed a succession of two to several genotypes becoming numerically dominant depending on the underlying temperature pattern. The results suggest that (temperature) context dependent fitness may contribute to the maintenance of genetic diversity in isolated populations of clonally reproducing microorganisms in temporally variable environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号