首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed a molecular phylogenetic analysis of the ground beetles Apatrobus (Carabidae), endemic to Japan, using the mitochondrial cytochrome c oxidase subunit I (COI) and the nuclear 28S rRNA (28S) genes. We focused on the species divergence in Kyushu, Shikoku and western Honshu and used 15 of 19 species and three populations with undetermined species in the DNA analysis. The gene trees showed that, of the Apatrobus species studied, A. hayachinensis Nakane from northern Honshu was not included in the monophyletic group of the other Apatrobus species and likely to be of a different genus. Divergence time estimation suggested that Apatrobus species excluding A. hayachinensis diverged 5.2 million years ago and the subsequent divergence of species occurred during the Pliocene and Pleistocene. In each of the main islands, Kyushu, Shikoku and Honshu, two or more distinct lineages occurred and all species had restricted distribution areas, suggesting that ancient dispersal and vicariance among the three main islands resulted in the nested biogeographical pattern of species distribution.  相似文献   

2.
Aim The phylogeny of the enid land-snail genus Pachnodus was determined in order to provide information on biogeographical patterns within the granitic Seychelles islands. Location The genus Pachnodus is endemic to the granitic islands of Seychelles (Mahé, Silhouette, Praslin, La Digue and Fregate). Methods Phylogeny was determined using a cladistic analysis of nineteen shell and soft-body anatomy characters. The outgroup used was the central-east African genus Cerastus. Results The proposed phylogeny indicates that the genus divided into two distinct subgenera early in its history. Subsequent speciation occurred in parallel in the two subgenera, resulting in several islands supporting at least two distinct species representing the two subgenera. Main conclusions The pattern of speciation is largely explicable by vicariance as a result of sea-level rises, followed by habitat specialisation and further speciation. The pattern is in contrast to previously published scenarios for other taxa in the islands and indicates significant differences between evolutionary and habitat factors in the biogeography of the Seychelles fauna  相似文献   

3.
Abaristophora sachalinensis Michailovskaya is reviewed based on Japanese materials. Its male genitalia are compared with those of the genus Borophaga, which is a genus in a group of the related genera, the Borophaga subgroup. A synapomorphic character of the Borophaga subgroup including Abaristophora, the left flattened arm derived from the posterodorsal margin of the hypandrium being broadened at the base, is confirmed in A. sachalinensis. Morphology of the aedeagus in A. sachalinensis is complex and extremely asymmetric, and very similar to that of species of the genus Borophaga, but the characters observed in this study are not regarded as synapomorphic for the Borophaga subgroup.  相似文献   

4.
On Rosemary Island, a small continental island (11 km2) in the Dampier Archipelago, Western Australia, snails of the genus Rhagada have extremely diverse morphologies. Their shells vary remarkably in size and shape, with the latter ranging from globose to keeled‐flat, spanning the range of variation in the entire genus. Based primarily on variation in shell morphology, five distinct species are currently recognized. However, a study of 103 populations has revealed continuity of shell form within a very closely‐related group. A phylogenetic analysis of specimens from Rosemary Island, and other islands in the Dampier Archipelago, indicates that much of the morphological variation has evolved on the island, from within a monophyletic group. Within the island, snails with distinct shell morphologies could not be distinguished based on variation in mitochondrial DNA or their reproductive anatomy. The shell variation is geographically structured over a very fine scale, with clines linking the extreme forms over distances less than 200 m. Although there is no evidence that the different forms have evolved in isolation or as a consequence of drift, there is a strong association between keeled‐flat shells and rocky habitats, suggesting that shell shape may be of adaptive significance. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 756–769.  相似文献   

5.
Morphological and RAPD markers were used to assess the relationships among nodulating and non-nodulating species of AfricanAcacia. Non-nodulating species of AfricanAcacia are only found within subg.Aculeiferum sect.Monacanthea. African species of sect.Monacanthea examined were found to form a group distinct from the other African species examined on a morphological and molecular basis. All lack the ability to nodulate, suggesting that non-nodulation may be used as a taxonomic tool. The species of sect.Aculeiferum were separated by RAPD and morphological analysis into two groups depending on whether they were armed with prickles in pairs and/or prickles in threes, or solitary. A third group of species was identified within sect.Acacia: further subdivision of this group was achieved into subsectt.Pluriseriae andUniseriae. The position ofA. albida relative to other AfricanAcacia species was found to be distinct but not totally independent of the genus. The partitioning and distribution of the genetic variability within the genus is further elucidated by the RAPD analysis of populations ofAcacia species. A population analysis ofA. polyacantha demonstrated geographical and site-specific variation.  相似文献   

6.
Abstract Volcanic archipelagos represent excellent areas to study colonization and speciation processes. The grasshopper genus Arminda is one of many endemic taxa of the Canary Islands. It consists of seven wingless species, most of which are single‐island endemics. We sequenced two mitochondrial (12s rRNA, ND5) and two nuclear gene fragments (28s rRNA, ITS2) to reconstruct the colonization pattern of the genus. Our results are in accordance with a stepping‐stone colonization model from east to west, corresponding to the prevailing ocean currents, but alternative hypotheses cannot be fully rejected. The populations of A. brunneri from Tenerife belong to two different lineages (east and west) consistent with the geological history of the island. It remains to be tested whether these lineages represent different species and whether further lineages exist on this island. The five clades of the four western islands (A. brunneri group) have approximately similar branch lengths. The short internodes between these lineages resulted in a poorer phylogenetic resolution. Specimens from La Palma were genetically distinct and are subsequently described as a new species, Arminda palmae sp.n. Our results suggest in situ speciation on Gran Canaria, which was accompanied by a stronger degree of morphological diversification than the inter‐island speciation processes. The aberrant species A. canariensis has formerly been assigned to a monotypic subgenus Chopardminda, which is now synonymized with Arminda syn.n. based on its phylogenetic position. Gran Canaria seems to be the only island where Arminda species occur sympatrically, although allopatric speciation seems likely due to the long history of volcanism and erosion on the island.  相似文献   

7.
Ainscough, B.J., Breinholt, J.W., Robison, H.W. & Crandall, K.A. (2013). Molecular phylogenetics of the burrowing crayfish genus Fallicambarus (Decapoda: Cambaridae). —Zoologica Scripta, 42, 306–316. The crayfish genus Fallicambarus contains 19 species of primary burrowing freshwater crayfish divided into two distinct subgenera. We test current hypotheses of the phylogenetic relationships among species within the genus as well as the monophyly of the genus. Our study samples all 19 species for five gene regions (both nuclear and mitochondrial) to estimate a robust phylogenetic hypothesis for the genus. We show that the genus is not a monophyletic group. The subgenus Creaserinus does fall out as a monophyletic group, but distinct from the subgenus Fallicambarus. The subgenus Fallicambarus appears to be monophyletic with the exception of the species Procambarus (Tenuicambarus) tenuis, which falls in the midst of this subgenus suggesting that it might be better classified as a Fallicambarus species. We also show that the species Fallicambarus fodiens is a species complex with distinct evolutionary lineages that are regionalized to different geographic areas.  相似文献   

8.
We investigated the phylogeny and phylogeography of four closely related Ainsliaea species (Asteraceae) on the continental Ryukyu Islands of eastern Asia, which consist of two flood-adapted “rheophyte” and two non-rheophyte (inland) species, based on 12 nuclear microsatellite loci. Phylogenetic analyses using 420 individuals from 26 populations showed that rheophytic A. linearis and A. oblonga are genetically distinct. Each species was clustered with the inland species that occur on the same islands, suggesting a different ancestry for the two rheophytes that evolved independently by local adaptation to flooded habitats. The results from the neighbor-joining clustering and principal coordinate analysis (PCoA) indicate that the southern populations of A. macroclinidioides are distinct lineages and ancestral to the northern populations as well as the other diverse species complex in the Ryukyus. These results suggest a pattern of colonization initially from the Asian mainland to the southern islands, followed by the northern islands via land bridges generated during the Quaternary glaciations. After isolation from southern populations, species radiation and regional differentiation within the northern clade occurred possibly via local adaptation and/or geographic isolation of the subdivided island bridge.  相似文献   

9.
A taxonomic revision of the genus Aneorhachis Kleine 1923 (Coleoptera: Brentidae) and a phylogenetic analysis of species belonging to this genus are carried out. The genus Ipsopisthius Kabakov 2001 is synonymised with Aneorhachis, and two new combinations are proposed: Aneorhachis hirta (Kabakov 2001), n. comb. and A. incerta (Kleine 1935), n. comb. Higonius nitens Goossens 2008 is synonymized with A. incerta. One new species is described from New Guinea, A. papuana n. sp. All the species are redescribed and type-specimens are illustrated; an identification key is proposed. A maximum parsimony analysis is provided on the base of 23 characters from adult morphology. This analysis confirms the monophyly of the genus and seems to show that Aneorhachis originated on continental Asia and then spread out eastward to colonize Pacific islands.  相似文献   

10.
A new species of the genus Cryptococcus, Cr. mycelialis (the type strain VKM Y-2863), is described based on the taxonomic study of four strains isolated from soil and plant samples collected on the South Georgia and East Falkland islands. This species differs from the known Cryptococcus species in its ability to form a true monokaryotic mycelium with pseudoclamp connections and haustoria. The species can be distinguished from the phylogenetically related and phenotypically similar species Holtermannia corniformis and Cr. nyarrowii by some assimilatory reactions, maximum growth temperature, and sensitivity to mycocins.  相似文献   

11.
12.
Pythiogeton is a little-studied genus of pythialean Oomycete. The genus is characterized by producing its zoospores outside of the sporangium within an apparently naked protoplasmic mass, which formed from a discharge tube-vesicle complex. A total of nine morphologically distinct Pythiogeton species were identified, of which six were new species (Pythiogeton abundans, Pythiogeton microzoosporum, Pythiogeton oblongilobum, Pythiogeton paucisporum, Pythiogeton proliferatum, and Pythiogeton puliensis). A phylogenetic analysis based on internal transcribed spacer sequences revealed that all isolates of Pythiogeton formed a highly supported clade, nested within the wider clade of Pythium species. Each newly recognized Pythiogeton species that was established on the basis of morphological characters was found to occur in a well-supported subgroup within the Pythiogeton clade, confirming their assignment to new species. Pythiogeton shares a common ancestor with the monophyletic group of Pythium species that have predominantly filamentous sporangia rather than with the separate clade of Pythium species that have predominantly globose or ovoid sporangia. This study confirms that Pythium is an extremely heterogenous and polyphyletic genus containing a number of distinct clades of species, including Pythiogeton, which possess morphologically distinguishable characters. A synoptic key to all the described Pythiogeton species is provided.  相似文献   

13.
Aim To provide a detailed biogeography of the diatom genus Stauroneis in the Antarctic and sub‐Antarctic regions and to establish the biogeographical relationships between the different constituent locations to test the application of a precise and refined taxonomy in generating accurate polar biogeographies. Location The Antarctic and sub‐Antarctic region comprising the islands South Georgia, Crozet, Kerguelen, Marion, Heard and the Antarctic Peninsula. Methods Diatom samples from different habitats in a large part of the sub‐Antarctic and Antarctic region were investigated for their Stauroneis content. Presence/absence data were investigated using Sørensen's similarity index. An additional 500 samples from Arctic locations were used to provide a bipolar comparison. Using reliable literature data, gaps in the distribution of the Stauroneis taxa were filled. Results The Stauroneis flora of the Antarctic and sub‐Antarctic regions is quite distinct from its Arctic equivalent, with only five species (out of 60) common to both areas. Within the (sub‐)Antarctic group, the islands of the Indian Ocean have the most diverse Stauroneis composition, which is clearly separated from the rest of the region. The South Georgia Stauroneis composition has some affinities with the Antarctic Peninsula but the latter has far fewer species. These results are in clear contrast to older data showing no biogeographical difference between the Arctic and Antarctic regions. Main conclusions Using only a single genus, a clear biogeography of the (sub‐)Antarctic region can be produced that separates the Indian Ocean islands from other sampling locations. When based on a precise taxonomy, biogeographical relationships between locations in the region become much more reliable. Contrary to previous work, there is almost no similarity in the diatom floras of the Arctic and Antarctic regions.  相似文献   

14.
The genus Kermadecia (Proteaceae), originally described as endemic to New Caledonia, has been expanded in recent decades to include three species from the New Hebrides and Fiji. Specialists on the Proteaceae have suggested that the three Melanesian species were generically misplaced, and careful reexamination supports this viewpoint. It is now apparent that a distinct group within the subfamily Grevilleoideae is composed of the genera Euplassa (endemic to South America), Sleumerodendron (a monotypic New Caledonian genus), Gevuina (based on a single South American species but recently expanded to include two other species from Queensland and New Guinea), and the three questionable Melanesian species. A review of this cluster of taxa indicates that Gevuina should again be interpreted as restricted to South America and that the generic name Bleasdalea F. v. Muell. ex Domin should be adopted for a group of five species extending from Queensland and New Guinea to the New Hebrides and Fiji. The relationships of the four genera are discussed and within Bleasdalea four new combinations are proposed: B. bleasdalei (F. v. Muell.), B. ferruginea (A. C. Sm.), B. vitiensis (Turrill), and B. lutea (Guillaumin). Kermadecia, very distinct from the four genera under present consideration, is again interpreted as a New Caledonian endemic.  相似文献   

15.
Aim Cryptoblepharus is a genus of small arboreal or rock‐dwelling scincid lizards, widespread through the Indo‐Pacific and Australian regions, with a disjunct outlier in the Malagasy region. The taxonomy within this genus is controversial, with different authors ranking the different forms (now some 36) at various levels, from different species to subspecies of a single species, Cryptoblepharus boutonii. We investigated the biogeography and genetic differentiation of the Cryptoblepharus from the Western Indian Ocean region, in order to understand their origin and history. Location Western Indian Ocean region. Methods We analysed sequences of mitochondrial DNA (partial 12s and 16s rRNA genes, 766 bp) from 48 specimens collected in Madagascar, Mauritius, the four Comoros islands and East Africa, and also in New Caledonia, representing the Australo‐Pacific unit of the distribution. Results Pairwise sequence divergences of c. 3.1% were found between the New Caledonian forms and the ones from the Western Indian Ocean. Two clades were identified in Madagascar, probably corresponding to the recognized forms cognatus and voeltzkowi, and two clades were identified in the Comoro islands, where each island population formed a distinct haplotype clade. The East African samples form a monophyletic unit, with some variation existing between Pemba, Zanzibar and continental Tanzania populations. Individuals from Mauritius form a divergent group, more related to populations from Moheli and Grand Comore (Comoros islands) than to the others. Main conclusions The level of divergence between the populations from the Western Indian Ocean and Australian regions and the geographic coherence of the variation within the Western Indian Ocean group are concordant with the hypothesis of a colonization of this region by a natural transoceanic dispersal (from Australia or Indonesia). The group then may have diversified in Madagascar, from where it separately colonized the East African coast, the Comoros islands (twice), and Mauritius. The genetic divergence found is congruent with the known morphological variation, but its degree is much lower than typically seen between distinct species of reptiles.  相似文献   

16.
17.
The crassipes and pictipes species groups of Apiomerus Hahn together contain 12 species, many with high intraspecific chromatic variability, which represent the majority of Nearctic species in this New World assassin bug genus. Because of their geographical distribution and their varying degrees of polychromatism, these two species groups provide a unique opportunity to study the evolution of polychromatism and analyse relationships among areas of endemism in the Nearctic, as well as determine the boundary between the Nearctic and Neotropical regions. The results of a morphology based phylogenetic analysis allowed investigation of these questions while also determining relationships among the 12 species in the two species groups. The crassipes and pictipes species groups were each supported as monophyletic and as sister taxa. Apiomerus rufipennis (Fallou) was not included in the original concept of the crassipes species group, but is shown here to be a member of the group. Apiomerus barrocoloradoi Forero, Berniker & Szerlip, which had been hypothesized previously to belong to the pictipes species group, is excluded from this group. Intraspecific polychromatism for each species was identified as being present in one of three states: no polychromatism; limited polychromatism; or polychromatism as discrete colour morphs. Limited polychromatism was here found to be the ancestral state for Apiomerus, and species with discrete colour morphs are restricted to the crassipes and pictipes species groups. Polychromatism appears to be a greatly homoplastic character within the genus. A Brooks parsimony analysis recovered distinct Nearctic and Neotropical clades. The Nearctic clade is divided between areas in the central and eastern U.S.A. and areas in the Western U.S.A. and Mexico. The Nearctic–Neotropical boundary for the taxa included in the analysis is along the Isthmus of Tehuantepec in southern Mexico.  相似文献   

18.
19.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided.  相似文献   

20.
The fruit‐bat genus Pteralopex comprises the monkey‐faced bats, a group of six endangered species found only in old‐growth forests on certain islands in the south‐west Pacific (the Solomon Islands and Fiji). The taxonomy of the genus is reviewed in detail and updated accordingly. Two ‘cryptic’ biological species are shown to occur in sympatry on both Bougainville and Choiseul in the northern Solomon Islands (corresponding to Pteralopex anceps Andersen, 1909 and a previously undescribed species) and each is accordingly described and reviewed. A new genus (Mirimiri) is erected for the Fijian monkey‐faced bat (formerly Pteralopex acrodonta), which differs greatly both morphologically and genetically from species of Pteralopex in the Solomon Islands. Ecomorphological differences between sympatric Pteralopex species are briefly reviewed, including potential differences in functional morphology and feeding ecology. Geographic patterns of occurrence and future survey priorities for monkey‐faced bats are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号