首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pollen dispersal was investigated in five remnant populations of Eucalyptus wandoo, a dominant insect-pollinated tree in the fragmented agricultural region of southern Western Australia. Paternity analysis using six microsatellite loci identified a pollen source for 45% of seedlings, and the remainder were assumed to have arisen from pollen sources outside the stands. Outcrossing was variable, ranging from 52 to 89%, and long distance pollen dispersal was observed in all populations with up to 65% of pollen sourced from outside the populations over distances of at least 1 km. Modelling dispersal functions for pollination events within the two larger populations showed little difference between the four two-parameter models tested and indicated a fat-tailed dispersal curve. Similarity of direct and indirect historical estimates of gene flow indicates maintenance of gene flow at levels experienced prior to fragmentation. The study revealed extensive long distance pollen dispersal in remnant patches of trees within a fragmented agricultural landscape in the southern temperate region and highlighted the role of remnant patches in maintaining genetic connectivity at the landscape scale.  相似文献   

2.
We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water‐limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches.  相似文献   

3.
Given that diatom assemblages are a well-recognised method of characterising the water quality in freshwater streams, it seems reasonable to investigate its applicability to solar saltfields. A summer collection of benthic diatoms was undertaken in the salinas of the Dry Creek solar saltfields in South Australia for this purpose. The facility inputs seawater both from a low nutrient samphire creek and poorer quality, high nutrient samphire creek. Salinity and nutrient status of the pools and concentrating salinas have been thoroughly characterized over many years. The addition of JJ periphytometers to the sampling regime in the summer of 2001–2002 allowed the collection of benthic diatoms from these sites. Of the 69 species collected during the study, 16 species occurred only in oligotrophic waters with salinities less than 70 g/l TDS (total dissolved solids). Twenty species of diatoms occurred only in the eutrophic waters with salinities less than 70 g/l TDS, eight species were restricted to the hypersaline ponds and the remainder were undiscriminating in their ecological preferences. Guest Editor: John M. Melack Saline Water and their Biota  相似文献   

4.
Abstract Severe tropical Cyclone Monica impacted the coast of northern Australia in April 2006 with estimated maximum wind gusts of 360 km h?1. It rapidly moved inland losing intensity and passed over the town of Jabiru as a category 2 system, with maximum wind gusts recorded at 135 km h?1. The cyclone had a significant impact on the landscapes within the Alligator Rivers Region and significant windthrow of trees occurred. This paper describes the level of impact that category 2 level winds had on tree canopy loss 10 days after cyclone and then again 1 year later. Recovery was assessed using multispectral satellite imagery in sub‐catchments of the Magela Creek catchments. A non‐linear relationship was fitted between a modified vegetation index (derived from Landsat TM5 satellite data) and percentage tree canopy cover (measured from very high resolution QuickBird satellite data). The results of the non‐linear relationship, used to estimate percentage canopy cover, indicate that 10 days after cyclone, there was significant disturbance to tree canopy. However, data 1 year after cyclone show that recovery of canopy across the studied catchments varied between 8% and 19% of the percentage canopy cover that remained after the initial impact of the cyclone. Further analysis in the three sub‐catchments using Geographical Information System showed that proportionally, riparian zones and inundated areas in each of the sub‐catchments suffered greater loss of tree canopy cover compared with upland areas.  相似文献   

5.
The canopies of many tree species sustain a large diversity of folivorous arthropods and phytopathogenic fungi. These organisms are thought to influence overall tree and stand productivity. Leaf diseases caused by Phyllosticta owaniana and Periconiella velutina, phytopathogenic fungi commonly found on the native riparian tree Brabejum stellatifolium (wild almond), like any other leaf disease, can potentially reduce a plant's photosynthetic efficiency. In addition to these two phytopathogens, the weevils Setapion provinciale and Setapion quantillum are abundant in wild almond canopies. Despite their pervasive occurrence, the impacts of these phytopathogens and arthropods on host tree leaf physiology have not been examined. The gas exchange response of wild almond leaves to phytopathogens and folivore damage was assessed. Leaf nitrogen, phosphorus and water content were also determined. Declines in photosynthetic rates and other physiological parameters were associated with increasing damage severity by weevils and phytopathogens in leaves of B. stellatifolium. Nitrogen and phosphorus contents were negatively associated with disease severity. Water and phosphorus contents were also negatively correlated with increased weevil damage, while nitrogen content was positively correlated with it. The observed responses of B. stellatifolium metabolic functioning to fungal pathogen and folivory indicate a possibility of suppressed wild populations of wild almond.  相似文献   

6.
On the western Arnhem Land Plateau, Northern Territory, Australia, seedlings of the canopy tree Allosyncarpia ternata S.T. Blake typically spend many years (perhaps decades) as small (<1 m), multistemmed plants on the forest floor. In this establishment phase, long periods of apparent inactivity are interrupted by episodes of rapid growth. This paper describes a 5‐year field‐monitoring program to examine the pattern of seedling growth and survival in allosyncarpia forest, and field and shadehouse measurements of lignotuber size. Individual seedlings may produce, each wet season, a number of fast‐growing stems, which then die back in the following dry season. As a result, mean annual above‐ground growth during this life stage is negligible. With each wet season, however, the seedling extends its below ground parts – a large lignotuber and a deep root system. After a number of years, when the lignotuber has grown large enough to sustain massive shoot growth, when a suitable light gap becomes available, and presumably when roots reach reliable dry‐season water supplies, the seedling grows rapidly. Thus, the shortage of saplings in allosyncarpia forest is due to the short time that individual plants spend at that particular growth‐stage, rather than to any dysfunction in recruitment.  相似文献   

7.
1. The growth of riparian trees in semi‐arid regions is influenced by stream flow regime, but the relative importance of base flow and seasonal floods on growth has not been explored. I examined abiotic influences on the growth of Platanus wrightii in four stream reaches in Arizona. All reaches had a bimodal pattern of discharge, but only two had continuous flow throughout the growing season.
2. In two reaches of Sycamore Creek without perennial flow, a large percentage of the annual variation in radial growth rate of P. wrightii was explained by annual and growing season flow rate. Growth was related to these same variables in a perennial reach of Sycamore Creek, but trees maintained higher growth during drought years than they did in the temporary reaches. At Oak Creek, a larger perennial stream, P. wrightii growth showed a bell‐shaped relationship with flow. These data suggest that growth rate is frequently limited by water availability at Sycamore Creek, but not at Oak Creek.
3. At both rivers, much of the annual surface flow occurs as winter floods. Oak Creek, however, maintains a high summer base flow even during years with no floods. Platanus wrightii growth was significantly related to winter flood frequency only at Sycamore Creek. The positive relationship of growth with stream flow and winter flood frequency at Sycamore Creek presumably occurs because the P. wrightii trees are dependent on the winter flows to recharge the shallow alluvial aquifer and to raise the level of ground water within the root zone.
4. Frequent summer floods increased the growth of trees in perennial and non‐perennial reaches alike. At perennial Oak Creek, summer flood frequency was the only variable linearly related to growth of P. wrightii. Summer flood frequency was a significant, but secondary, component of multiple‐regression growth models for trees in the perennial and non‐perennial reaches of Sycamore Creek. Summer floods may stimulate growth, in part, by replenishing limiting nutrients.
5. High temperature was negatively associated with the growth of P. wrightii at Sycamore Creek. The combination of drought and high temperature resulted in very low growth rate.
6. These results have implications for the management of flood and base flow regimes on regulated, diverted and pumped rivers.  相似文献   

8.
Moderately-preserved Silurian radiolarians have been recovered from the Jenolan Caves region, eastern NSW, Australia. Radiolarians were first reported from this area in the late 19th Century by T.W. Edgeworth David, but were not described in detail, neither were they illustrated. Nearly 120 years later, the first images of these fossils are presented. The radiolarians reported include: ?Futobari cf. solidus Furutani, ?Zadrappolus sp., Haplentactiniid gen. and sp. indet, Borisella sp., ?Palaeoephippium sp., ?Insolitignum vivanima MacDonald and ?Helenifore speciosus (Furutani). The fauna is similar to others described from Upper Silurian strata in Japan.  相似文献   

9.
Wildy  Dan T.  Pate  John S.  Bartle  John R. 《Plant and Soil》2004,262(1-2):129-149
Plant and Soil - Water budgets were constructed over a 22&;nbsp;month period for young uncut or coppiced (resprouting) Eucalyptus kochii Maiden &;amp; Blakely subsp. plenissima Gardner...  相似文献   

10.
Wildy DT  Pate JS 《Annals of botany》2002,90(2):185-197
Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3,000 on 4- to 5-year-old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140-170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1.7-2.5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one-third that of uncut control trees and shoot:root dry mass ratios of coppiced plants were still low (1.5-2.0) compared with those of the controls (average ratio of 3.1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below-ground biomass fell quickly following decapitation and remained low for a 12-18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production.  相似文献   

11.
We aimed to (i) assess the extant genetic diversity of the riparian relict tree Pterocarya fraxinifolia across its current distribution range in the South Caucasus, including the past refugial areas Colchis and Hyrcan, and (ii) test if a separation of these areas is reflected in its phylogeographic history. Genetic diversity of natural populations was examined using nuclear microsatellite and plastid DNA markers. Spatial genetic structure was evaluated using Bayesian clustering methods and the reconstruction of plastid DNA networks. Divergence times of Colchic and Hyrcanian populations were estimated via divergence dating using a relaxed molecular clock. Allelic richness, private allelic richness, and expected heterozygosity were significantly higher in Hyrcan than in Colchis and the Greater Caucasus, and significant genetic differentiation was revealed between the two groups. Whereas only two plastid haplotypes were detected for the Colchic and Caucasian populations, the Hyrcanian populations displayed 11 different haplotypes. Significant isolation by distance was detected in Hyrcan. The most recent common ancestor of all P. fraxinifolia haplotypes was dated to a time well before a suggested glaciation period in the Caucasus during the late Pliocene (5.98 Ma [11.3–2.48 Ma HPD]). The widespread Colchic haplotype that also occurs along the southern slope of the Greater Caucasus and reaches south-eastern Azerbaijan has appeared more recently (0.24 Ma [1.41–0 Ma HPD]). This diversification pattern of Colchic haplotypes from ancient Hyrcanian haplotypes suggests a colonization of the region from south-east to north-west that predates the last glacial maximum (LGM). Natural populations of P. fraxinifolia show low-to-intermediate levels of genetic diversity and a significant decrease of diversity from Hyrcan to Colchis. However, the genetic differentiation between Colchic-Caucasian and Hyrcanian populations for nuclear markers suggests that independent gene pools existed in both areas at least since the LGM. Particular attention to conservation seems justified for the more diverse Hyrcanian populations.  相似文献   

12.
This study assessed the genotype by environment (G × E) interaction for diameter growth in 15 Eucalyptus globulus progeny trials in Australia. Single-site analyses revealed significant subrace and family-within-subrace variance in all trials. Across-site subrace () and family () correlations were estimated by linear mixed model analyses of pairs of trials. Using a factor analytic structure for subrace and family random terms in a multi-environment mixed model analysis, best linear unbiased predictions of subrace effects were obtained for each trial. These were then averaged for each of four states (Victoria, Tasmania, South Australia and Western Australia) and across all sites. Statistically significant G × E interaction was detected, and weighted means across states for and were 0.73 and 0.76, respectively. Nevertheless, the three subraces from the Otway Ranges were both fast growing and relatively stable in their ranks over all sites. We evaluated the sensitivity of subraces to changing environmental conditions, on the basis of random coefficient models regressing subrace performance on selected trial climatic variables. The results suggested differential susceptibility of subraces to water, light and (to a less extent) temperature stresses during summer. Moreover, using multivariate techniques to visualize and interpret the across-site correlation structure for subrace effects, we could identify site clusters of reduced G × E interaction related to soil water availability and evaporative demand during summer. A revised site-type classification using these factors should allow a better capture of genetic gains from breeding and deployment.  相似文献   

13.
14.
We examine the effects of spacing and layout on the growth and form of 3- to 4-year-old Eucalyptus globulus in a farm forestry context. Four planting layouts were chosen. These represented the range commonly in use in farm forestry: block plantings (2Ǹ m), triple rows (2Ǹ m) at 10-m intervals, single rows (2᎒ m) and isolated trees (10᎒ m). The physiological significance of key results is interpreted in terms of changes in the parameters of a simple plantation growth model. Under conditions where levels of direct light are high, for example during summer, block-planted trees intercepted only 38% of the light intercepted by isolated trees. On a stand basis, however, the combination of incident radiation and ground coverage declined with lower stand densities. While stand leaf area index declined from around 6 to 1 with increased spacing, individual tree leaf areas rose from around 50 m2 in block plantings to 150 m2 in isolated trees. The proportion of above-ground biomass found in stems declined with increasing spacing as the mass in foliage and branches increased. Stems accounted for 65% of above-ground biomass in block-planted trees but only 35% in isolated trees. The contributions of leaves and branches correspondingly rose from 19% to 35% and from 16% to 29%, respectively. Changes in biomass distribution were accompanied by increasing branch number, branch thickness, flatter branch angles and the longer retention of lower branches with greater spacing. These changes have implications for the merchantability of the timber. The efficiency of above-ground radiation conversion was constant at 0.67 g MJ-1 irrespective of spacing. We estimated that foliar maintenance respiration (Rm) accounted for about 90% of above-ground Rm. On a stand basis Rm costs block plantings 23.90 t DM ha-1 year-1 (50% annual above-ground photosynthetic production) compared with 6.22 t DM ha-1 year-1 (40% annual above-ground photosynthetic production) in stands of isolated trees.  相似文献   

15.
Landscape and Ecological Engineering - Riparian areas provide many ecosystems services to humans that have been utilized for thousands of years and are the main reason why these areas are degraded....  相似文献   

16.
Several species of Ceratocystis have been recorded on Eucalyptus. These include C. fimbriata, C. eucalypti, C. moniliformis and C. moniliformopsis. Of these, only C. fimbriata is known as a pathogen; it recently has been found causing serious wilt diseases in Uganda, Congo and Brazil. This study was undertaken to collect Ceratocystis species, including C. eucalypti, from artificially induced wounds on Eucalyptus nitens near Canberra in southeastern Australia. Trees were wounded in October 2000, and wounds were examined approximately one month later. Ascomata characteristic of a Ceratocystis species were found covering the wounds, and this fungus also was isolated from the wood using carrot baiting. This species of Ceratocystis has hat-shaped ascospores similar to those of C. fimbriata, but it differs from C. fimbriata and all other species of Ceratocystis in that it possesses ascomata with a pyriform base. Comparison of DNA sequences from the ITS and 5.8S rRNA operon confirmed that the fungus from E. nitens in Australia is unique, and we describe it here as a new species, C. pirilliformis.  相似文献   

17.
Regional persistence of species requires a positive balance between colonizations and local extinctions. In this study, we examined the amount of colonizations and extinctions and their likelihood as a function of patch size, isolation, and habitat characteristics of a riparian perennial plant, Erigeron acer subsp. decoloratus. We also studied the importance of patch dynamics to the regional population growth. Over five successive years, we counted the number of plant patches along 43 km of riverside. Most patches were small in area and population size. The annual finite growth rate in the number of patches varied between years, but the geometric mean was close to 1.0, indicating a viable patch network in spite of local extinctions. Extinction rate was highest on steep slopes and for small patches with few individual plants and a small patch area. When the patches were classified into different stage classes, the most common fate was stasis, i.e., the patch remained at the same stage. Patch survival and local, within-patch dynamics were most important during this five-year period. Between-patch dynamics (including colonization for example) accounted for 5–10% of annual transitions. The overall dynamics were relatively similar to those of other plant species subjected to riparian disturbance regimes. In the long run, the survival of the species depends on how well it is able to escape from competition from forest and meadow species and track the availability of suitable habitats. This kind of habitat tracking differs from classical metapopulation dynamics. In the former, local extinctions occur as a consequence of adverse changes in the habitat and recolonizations are rare, whereas metapopulation models assume a highly persistent habitat structure with frequent recolonizations. In this respect, the regional dynamics of perennial plants in disturbed riparian habitats may differ from classical metapopulations.  相似文献   

18.

Key message

The paper demonstrates the prospects and applications of dendrochronology for understanding climate change effects on riparian forests in the savanna landscape. 

Abstract

Riparian trees in savannas have a potential for dendro-climatic studies, but have been neglected hitherto. We examined ring-width series of Afzelia africana (evergreen) and Anogeissus leiocarpus (deciduous) to study the influence of climatic factors on the growth of riparian trees in the humid (HS) and dry (DS) savanna zones of the Volta basin in Ghana. A total of 31 stem discs belonging to A. africana and A. leiocarpus were selected from HS and DS to establish species-specific local chronologies of tree growth. Each individual of A. africana and A. leiocarpus from the two savanna sites showed distinct growth rings. Cross-dating of individual tree-ring patterns was successful using standard dendrochronological techniques. The mean annual growth rates of A. africana in the HS (1.38 ± 0.09) and DS (1.34 ± 0.08) were not statistically different. Furthermore, mean annual growth rate of A. leiocarpus in the DS (3.75 ± 0.27) was higher than in the HS (2.83 ± 0.16) suggesting that species in drier environment can have higher growth rates when sufficient soil moisture is available. The growth rates of both species at the same sites were different, which might indicate different water use strategies. High correlations of individual tree-ring series of A. africana and A. leiocarpus trees at HS and DS suggest a strong climatic forcing controlled by the seasonal movement of the inter-tropical convergence zone. The annual growth of A. africana and A. leiocarpus at both the HS and DS was significantly correlated with local temperature and precipitation. The negative correlations of the growth of the two tree species to global sea surface temperatures were however, indications that the growth of riparian forests can be impacted during El Niño-Southern Oscillation years. The result of our study shows that riparian trees in the humid and dry savanna zones of West Africa can be successfully used for dendrochronological studies.
  相似文献   

19.
Riparian ash forests subjected to seasonal drought are among the most endangered ecosystems in Europe. They are threatened by climate warming causing aridification and by land-use changes modifying river flow. To assess the impacts of these two stress factors on riparian forests, we studied radial growth and xylem anatomical traits in five narrow-leaved ash (Fraxinus angustifolia) stands across wide climatic and ecological gradients from northern Italy to southern Portugal. Radial growth rates and earlywood hydraulic diameter (Dh) were directly correlated, whilst earlywood vessel density and growth rates were inversely associated. Ash growth positively responded to precipitation. Higher and lower rates of growth increase in response to precipitation were found in dry (annual precipitation 357–750 mm, annual water balance −39 to −48 mm) and wet (annual precipitation 1030 mm, annual water balance 27 mm) sites, respectively. Wet conditions in autumn and winter of the year prior to tree-ring formation lead to larger Dh values, except in the wet site where warmer conditions from prior autumn to current spring were positively associated to wider vessels. Growth was also enhanced by a higher river flow, reflecting higher soil moisture due to elevated groundwater table levels. Peaks in river flow from late winter to early spring increased Dh in dry-continental sites. Growth and potential hydraulic conductivity in drought-prone riparian ash forests are differently impacted by climate variability and river flow depending on site and hydrological conditions. Nevertheless, covariation between radial growth and the earlywood vessel diameter was found, regardless of site specific differences. Wood production and hydraulic conductivity are coordinated through the production of large earlywood vessels which may allow reaching higher growth rates.  相似文献   

20.
Abstract We present regression models of species richness for total tree species, two growth forms, rainforest trees (broadleaf evergreens) and eucalypts (sclerophylls), and two large subgenera of Eucalyptus. The correlative models are based on a data set of 166 tree species from 7208 plots in an area of southeastern New South Wales, Australia. Eight environmental variables are used to model the patterns of species richness, four continuous variables (mean annual temperature, rainfall, radiation and plot size), plus four categorical factors (topographic position, lithology, soil nutrient level and rainfall seasonality). Generalized linear modelling with curvilinear and interaction terms, is used to derive the models. Each model shows a significant and differing response to the environmental predictors. Maximum species richness of eucalypts occurs at high temperatures, and intermediate rainfall and radiation conditions on ridges with aseasonal rainfall and intermediate nutrient levels. Maximum richness of rainforest species occurs at high temperatures, intermediate rainfall and low radiation in gullies with summer rainfall and high nutrient levels. The eucalypt subgenera models differ in ways consistent with experimental studies of habitat preferences of the subgenera. Curvilinear and interaction terms are necessary for adequate modelling. Patterns of richness vary widely with taxonomic rank and growth form. Any theories of species diversity should be consistent with these correlative models. The models are consistent with an available energy hypothesis based on actual evapotranspiration. We conclude that studies of species richness patterns should include local (e.g. soil nutrients, topographic position) and regional (e.g. mean annual temperature, annual rainfall) environmental variables before invoking concepts such as niche saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号