首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flagellar basal apparatus of the brown alga Ectocarpus siliculosus was re‐investigated in details using transmission electron microscopy and electron tomography. As a result, three‐dimensional structures with spatial arrangement of bands and microtubular flagellar rootlets were observed. Fibrous structures linking the anterior flagellar basal body to the major anterior rootlet (R3) or the bypassing rootlet was newly discovered in this study. A direct attachment from the minor anterior rootlet (R4) to the anterior and posterior basal bodies was also discovered, as were attachments from the minor posterior rootlet (R1) to the deltoid striated band and from the major posterior rootlet (R2) to the posterior fibrous band. The microtubular flagellar rootlets were connected to the bands and to the anterior or posterior basal body. These bands may have a role in maintaining the spatial arrangement of the anterior and posterior flagellar basal bodies and the microtubular flagellar rootlets. A numbering system of the basal body triplets was established by tracing axonemal doublets in the serial sections. From these observations, the precise position of two flagellar basal bodies, bands, and flagellar rootlets was determined.  相似文献   

2.
The flagellar apparatus of the marine dinoflagellate Amphidinium rhynchocephalum Anissimowa was examined using the techniques of rapid freezing/freeze substitution and serial thin section three dimensional reconstruction. The flagellar apparatus is composed of two basal bodies that are offset from one another and lie at an angle of approximately 150° The transverse basal body is associated with two individual microtubules that extend from the proximal end of the basal body toward the flagellar opening. One of these microtubules is closely appressed to a striated fibrous root that also extends from the proximal base of the transverse basal body. The longitudinal basal body is associated with a nine member microtubular root that extends from the proximal end of the basal body toward the posterior of the cell. The longitudinal microtubular root and the transverse striated fiber are connected by a striated connective fiber. In addition to the microtubules associated with the transverse and longitudinal basal bodies, a group of microtubules originates adjacent to one of the transverse flagellar roots and extends into the cytoplasm. Vesicular channels extend from the flagellar openings to the region of the basal bodies where they expand to encompass the various connective structures of the flagellar apparatus. The possible function and evolutionary importance of these structures is discussed.  相似文献   

3.
The flagellar apparatus of Urospora penicilliformis (Roth) Aresch. is unique, or at least very unusual among green algae. The flagellar axonemes are rigid, and contain wing-like projections. There are no central microtubules in the most proximal part of the axoneme. The transition region contains a series of electron dense transverse lamellae rather than a single septum, and lacks a stellate pattern. There is no cartwheel pattern in the proximal part of the basal bodies. The latter are associated with four different types of fibrous elements: ascending striated fibers that attach to an electron dense plate in the papillar center, lateral striated fibers that parallel microtubular roots, fibrous elements that link adjacent basal bodies, and finally two massive striated fibers that descend into the cell, passing closely along the nucleus (system II fibers, or rhizoplasts). Each of the four microtubular flagellar roots is sandwiched between two system I striated structures. The roots are probably equal; they contain proximally four, and distally up to eight microtubules. Based on the zoospore flagellar apparatus, it is concluded that the multinucleate U. penicilliformis is related to the Ulvaphyceae. Finally, a possible explanation in functional terms is given for the peculiar external morphology and behavior of the zoospore.  相似文献   

4.
A new polyclonal antibody was raised against centrin isolated from the flagellate green alga Spermatozopsis similis (Chlorophyta; anti-SSC). It stains by immunofluorescence and immunoelectron microscopy well-known reference systems for centrin like the nucleus–basal body connectors in Chlamydomonas reinhardtii (Chlorophyta) and the system II fibers (rhizoplasts) of Scherffelia dubia (Chlorophyta). In addition, it recognizes in immunoblots a single 20-kDa protein in isolated cytoskeletons of Spermatozopsis similis and Tetraselmis striata (Chlorophyta) as well as purified centrin isolated from Tetraselmis striata. Using this antibody, centrin was localized in whole cells and isolated cytoskeletons of Oxyrrhis marina Dujardin (Dinophyceae) by immunofluorescence and immunogold electron microscopy. In the flagellar apparatus of O. marina, five different structures were antigenic. Four short fibers (connectives 1–4) link the basal bodies to the four major fibrous flagellar roots, which do not cross-react with anti-centrin. The most prominent of the labeled structures (connective 5), a crescent-shaped fiber, extends from the flagellar canal of the transverse flagellum along the base of the tentacle to the flagellar canal of the longitudinal flagellum, interconnecting the distal parts of the microtubular roots/bands in the basal apparatus. For most of its length, it underlies and is connected to a transversely oriented subamphiesmal microtubular band. In immunoblot analyses, anti-SSC recognizes only a single 20-kDa protein in cytoskeletons of O. marina. Functional and phylogenetic aspects of centrin-containing structures in dinoflagellates are discussed.  相似文献   

5.
Gymnodinium acidotum Nygaard is a freshwater dinoflagellate that is known to harbor a cryptomonad endosymbiont whose chloroplasls give the organism an overall blue-green color. The ultrastructure of G. acidotum was examined with particular attention being given to the three dimensional nature of the flagellar apparatus. The fiagellar apparatus is composed of two functional basal bodies that are slightly offset and lie at an angle of approximately 90° to one another. As in other dinoflagellates the transverse basal body is associated with a striated, fibrous root that extends from the proximal end of the basal body to the transverse flagellar opening. At least one microtubular root extends from the proximal end of the transverse basal body, and a multi-membered longitudinal microtubular root is associated with the longitudinal basal body. The most striking feature of the flagellar apparatus of G. acidotum is the large fibrous connective that extends from the region of the proximal ends of the basal bodies to the cingulum on the dorsal side of the cell. A similar structure has been reported from only one other dinoflagellate, Amphidinium cryophilum Wedemayer, Wilcox, and Graham. The presence of this structure as well as similarities in external morphology suggest thai these two species may be more closely related to each other than either is to other gymnodinioid taxa. The taxonomic importance of dinoflagellate flagellar apparatus components is discussed.  相似文献   

6.
Apparent variants, resembling Hecatonema sp., have been isolated from cultures of Ectocarpus fasciculatus Harv., Ectocarpus siliculosus (Dillw.) Lyngb., Giffordia irregularis (Kütz.) Le Jol. and Giffordia mitchellae (Harv.) Hamel. The origin and life history of the hecatonemoid forms is described. Their possible roles are discussed and an argument is presented in support of the hypothesis that they are contaminants.  相似文献   

7.
Absolute configurational analyses of flagellar apparatus components were performed on the motile cells produced by three species of Cladophora, Cl. dalmatica Kütz., Cl. flexuosa (Dillw.) Harv., and Cl. glomerata (L.) Kütz., and by Chaetomorpha aerea (Dillw.) Kütz. There was little variation among the species. All of the flagellar apparatuses demonstrated the ulvophyceous features of 180° rotational symmetry, counterclockwise absolute orientation, and basal body overlap, as well as the alignment of the basal bodies perpendicular to the long axis of the cell. Diagnostic features included the nearly complete absence of C tubules from the basal bodies and the presence of a coarsely striated component dorsal to the two-membered rootlets in all cells, as well as, in quadriflagellate cells, a tetralobate distal fiber, the coaxial arrangement of the lowermost pair of basal bodies, and the presence of a characteristic array of basal-body-associated striated bands. The distal fiber architecture, the presence of a “wing” in the X-membered rootlets, and the “flattening” of the flagellar apparatus components suggests a close relationship of the Cladophoraceae to the Dasycladales, and indicates that these two groups may have shared a common ancestor, possibly ancient in terms of the geological time scale but relatively recent in the context of ulvophyceous evolution. A sizeable phylogenetic gap exists between the Cladophoraceae and uninucleate-celled, presumably primitive members of the Ulvophyceae.  相似文献   

8.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

9.
The absolute configuration of the flagellar apparatus of biflagellate zoospores of Enteromorpha flexuosa (Wulfen ex Roth.) J. Agardh ssp. pilifera (Kütz.) Bliding was determined. Viewed from the anterior of the cell, the flagellar apparatus shows 180° rotational symmetry with a counter-clockwise absolute orientation of its components. In longitudinal sections, the posteriorly directed basal bodies form an angle of about 170°–180° to one another. A reduced striated distal fiber connects the two basal bodies. The cruciate microtubular rootlet system has a 4–2–4–2 alternation pattern. Striated microtubule-associated components (SMACs or system I-fibers) and rhizoplasts (or system II fibers) accompany the two-membered rootlets. Striated bands connect the proximal sheaths with the four-Membered rootlets. The bilobate terminal caps do not completely cover the proximal ends of the basal bodies. This is the first ultrastructural study of biflagellate zoospores in a member of the Ulvales.  相似文献   

10.
Two species of Ectocarpus, E. siliculosus (Dillw.) Lyngb. and E. fasciculatus Harv., occupying the same habitat at Port St Mary, Isle of Man, and apparently subject to the same environmental conditions, exhibit markedly different responses to copper.

The greater tolerance shown by E. siliculosus is unlikely to be attributable to direct local selection, but may result from immigration of copper-tolerant individuals from highly selective habitats nearby. E. siliculosus would appear to be a more variable species than E. fasciculatus, thereby being more readily affected by the forces of natural selection.  相似文献   

11.
The flagellar apparatus in male gametes of the siphonaceous green alga, Bryopsis maxima Okamura, was studied and compared with that of other green biflagellate cells. The proximal portions of two basal bodies are connected by a single striated proximal band, unique among the biflagellate reproductive cells of green algae studied. Anterior to the flagellar bases is a pair of distal bands different from the single structure in other biflagellate cells. These bands which arise from the distal portion of each basal body, extend upward in the papilla and curve down toward the lower edges of the basal bodies. They seem to have no direct association with each other. Two pairs of distinct flagellar roots, one consisting of 3–5 microtubules and the other of a partially striated fiber of undetermined numbers of microtubules, diverge from the basal body region and extend towards the cell posterior. Their component microtubules are disorganized into single or smaller groups midway over the cell length. The uniqueness of the flagellar apparatus is briefly discussed.  相似文献   

12.
The three-dimensional structure of the flagellar apparatus in the gonyaulacoid dinoflagellate. Ceratium hirundinella var. furcoïdes (Schröder) Hub.-Pest. was determined using serial section electron microscopy. The flagellar apparatus is quite large and consists of several components. The two basal bodies nearly abut at their proximal ends and are separated by an angle of approximately 120° The broad longitudinal microtubular root extends from the cell's left edge of the longitudinal basal body and bends around the sulcal/cingular depression into the cell's left antapical horn. A transverse striated fibrous root is associated with the transverse basal body and a narrow electron dense extension is present along the anterior edge of the transverse basal body. This study revealed severa1 hitherto unreported fibrous components of the flagellar apparatus that link the various microtubular and fibrous components to themselves and to the two striated collars. A large striated fibrous connective links the two striated collars to one another. This fibrous connective is linked to another striated fibrous connective that originates from the longitudinal basal body and lies perpendicular to the longitudinal microtubular root. The readily identifiable and numerous components of the Ceratium flagellar apparatus are comparable to those of other dinoflagellates. The combined presence of well dpveloped striated collars, a striated collar connective, and a basal body angle of approximately 120° indicates that this flagellar apparatus is most like that described for Peridinioid dinoflagellates. Important similarities are also noticeable between this flagellar apparatus and that of Oxyrrhis marina.  相似文献   

13.
DEVELOPMENT OF THE FLAGELLAR APPARATUS OF NAEGLERIA   总被引:19,自引:15,他引:4       下载免费PDF全文
Flagellates of Naegleria gruberi have an interconnected flagellar apparatus consisting of nucleus, rhizoplast and accessory filaments, basal bodies, and flagella. The structures of these components have been found to be similar to those in other flagellates. The development of methods for obtaining the relatively synchronous transformation of populations of Naegleria amebae into flagellates has permitted a study of the development of the flagellar apparatus. No indications of rhizoplast, basal body, or flagellum structures could be detected in amebae. A basal body appears and assumes a position at the cell surface with its filaments perpendicular to the cell membrane. Axoneme filaments extend from the basal body filaments into a progressive evagination of the cell membrane which becomes the flagellum sheath. Continued elongation of the axoneme filaments leads to differentiation of a fully formed flagellum with a typical "9 + 2" organization, within 10 min after the appearance of basal bodies.  相似文献   

14.
M. Melkonian 《Protoplasma》1981,108(3-4):341-355
Summary The flagellar apparatus of the quadriflagellate scaly green algaPyramimonas obovata has been studied in detail and the absolute configuration of the flagellar apparatus has been determined. The flagellar root system is cruciate (4-2-4-2-system). 18 major basal body associated fibrous structures connect the four basal bodies with each other. Each basal body is linked to an adjacent basal body by a unique set of connecting fibres, i.e., the flagellar apparatus does not exhibit 180° rotational symmetry. The flagellar apparatus ofPyramimonas obovata is compared with that of quadriflagellate motile cells of theChlorophyceae sensu Stewart andMattox and the phylogenetic relationships are discussed.  相似文献   

15.
Zoospore ultrastructure (incl. flagellar apparatus) has been investigated in three species ofTrebouxia (T. glomerata, T. erici, T. pyriformis) and one species ofPseudotrebouxia (P. impressa) using an absolute configuration analysis. Zoospores in all taxa studied are nearly identical in ultrastructure and exhibit a very distinctive disposition of cell organelles: cells are naked, biflagellate and considerably flattened along the plane of flagellar beat, the single contractile vacuole is located anteriorly in the ventral region of the cell, the nucleus is anteriorly to centrally located in the dorsal region of the cell. A single dictyosome is located close to the anterior, ventral edge of the nucleus. The chloroplast occupies a posterior position in the cell and usually has an anterior profile in the left region of the cell. There are two branched mitochondria per cell or a single mitochondrial reticulum with profiles anterior to the nucleus (in the dorsal region of the cell), and posterior to the nucleus. In zoospores ofTrebouxia spp. the posterior mitochondrial profile is associated with a microbody, inP. impressa zoospores the anterior mitochondrial profiles are associated with a microbody. The zoospores contain a distinctive system of three ER-cisternae: one system links to both basal bodies and extends to the nucleus, the other two systems subtend the plasmamembrane on the left and right broad cell surfaces and extend to the posterior region of the cell. The flagellar apparatus is structurally identical to that previously described for zoospores ofFriedmannia israelensis and exhibits basal body displacement by one basal body diameter into the 11/5 o'clock direction, a non-striated distal connecting fiber, a cruciate microtubular root system lacking system I fibers and presence of a single system II fiber which connects the basal bodies with the nucleus and runs parallel to one of the ER-strands. The left flagellar roots (X-roots) are subtended by a complex set of amorphous and striated material that connects each left root with both basal bodies.—This study demonstrates the close systematic relationship between the phycobiontsTrebouxia andPseudotrebouxia and the generaFriedmannia, Pleurastrum, andMicrothamnion and supports recent classification schemes which place all these taxa into a single order separate from otherChlorophyta. Dedicated to Prof. DrElisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

16.
Sexual plants of Northeastern American Ectocarpus siliculosus (Dilhw.) Lyngb. have been isolated and cultured. Female gametes produce a volatile sex hormone acting on male gametes. Combination of American and European gametes shows that the initial step of the sexual reaction (attraction of male gametes) works normally, whereas interaction of cell surfaces and fusion of gametes is prevented.  相似文献   

17.
Detergent-isolated flagellar apparatuses of the flagellate green alga Dunaliella bioculata retain remnants of the nucleus (the karyoskeleton) which are linked to the basal bodies by the centrin-containing nucleus basal body connectors (NBBC). Such complexes were subjected to different calcium concentrations (1 × 10?9 M ? 5 × 10?4 M Ca2+) and the distance between the basal bodies and the karyoskeleton was measured by light microscopy. The threshold concentration of Ca2+ for NBBC contraction was determined to be around 5 × 10?8 M Ca2+. At > 10?7 M Ca2+ NBBC were maximally contracted and the distance between the basal bodies and the karyoskeleton was only about 50% of the initial distance. Using a polyclonal antibody generated against centrin (Salisbury et al., 1984), the NBBC were visualized by indirect immunofluorescence in both the extended and contracted state. Our results demonstrate that in vitro contraction of centrin-containing filaments in green algae is initiated at about the same free Ca2+ concentration in three different centrin-containing basal apparatus components (i.e. the distal connecting fibre, the flagellar transitional region and the NBBC).  相似文献   

18.
The rhizoplast, a striated band elongating from the flagellar basal body to the nucleus, is conspicuous in cells of Ochromonas danica Prings. In interphase cells, it runs from the basal body of the anterior flagellum to the space between the nucleus and the Golgi body. In O. danica, the rhizoplast duplicates during mitosis and the two rhizoplasts serve as mitotic poles. In the present study, we reinvestigated mitosis of O. danica using transmission electron microscopy and immunofluorescence microscopy, especially focusing on the rhizoplast. The nuclear envelope became dispersed during metaphase, and the rhizoplasts from two sets of the flagellar basal bodies functioned as the mitotic poles. Immunofluorescence microscopy using anti‐α‐tubulin, anti‐centrin and anti‐γ‐tubulin antibodies showed that centrin molecules were localized at the flagellar basal bodies, whereas γ‐tubulin molecules were detected at the rhizoplast during the whole cell cycle.  相似文献   

19.
Summary The stephanokont flagellar apparatus of the zoospores ofDerbesia tenuissima (De Not.) Crouan is examined and compared to the flagellar apparatuses of other green algae. The flagella ofDerbesia are attached to two of three bands which lie at the junction of the body and papilla. Serial longitudinal and cross sections reveal that the basal bodies are attached to the bands along their sides and at their proximal ends. The bands are not striated in any plane. The lack of striation in the bands and the partial covering of the proximal end of the basal bodies by one of the bands closely resemble the type of flagellar connection system described as the Bryopsis-type byMelkonian (1980). Zoospores of ulvalean green algae also possess these features, suggesting that green siphons are phylogenetically related to theUlvales. It is proposed that green siphons be tentatively classified in theUlvaphyceae rather than in theChlorophyceae orCharophyceae.This work supported by NSF Grant DEB 78-03554.  相似文献   

20.
The overall appearance of the flagellar apparatus in the isogametes of Batophora oerstedii. J. Ag. is most like that which occurs in motile cells of the Ulvophyceae. Like other Ulvophyceae, the basal bodies overlap and are arranged in the 11/5 configuration, microtubular roots are arranged in a cruciate pattern and system II striated fibers are present. The basal body connective which generally lacks striation in the Ulvophyceae is clearly different in Batophora, being composed of two large non-striated halves which connect to the anterior surface of each basal body and are then connected to one another by a distinctly fibrous centrally striated region. This variation in the basal body connective and the presence of two posteriorly directed system II striated fibers is clearly different from homologous structures reported in siphonous green algae of the Caulerpales. Based upon these variations and similarities among flagellar apparatus components in siphonous green algae, it is suggested that the Dasycladales and Siphonodadales are more closely related to one another than to the Caulerpales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号