首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ultrastructure of tapetal cells in Timmiela barbuloideswas investigated in relation to events of sporogenesis. Aftertheir establishment both internally and externally to the sporogonialinitials, tapetal cells enlarge and assume a permanently polarizedorganization after completion of meiosis. A large vacuole isformed in the cell region distal to the spore sac, the nucleusbecomes centrally located, and amyloplasts lie in the cytoplasmadjacent to the spore sac. An extensive endomembrane systemdevelops in tapetal cells during the stage of exine depositionin spore tetrads. Sheets of rough endoplasmic reticulum developfirst around the nucleus then also in close proximity to theplasma membrane abutting the spore sac. Concomitantly, interveningdictyosomes produce a variety of vesicles. Unusual structureswith vesicle-like profiles also occur in the inner tapetum cellwalls abutting the spore sac. At the same time most of the starchis lost from the plastids in which grana-fretwork systems develop.A massive secretion of extremely electron-opaque material isassociated with perine deposition onto the free spore surfaces.Degeneration of the tapetal cells during the terminal stagesof spore maturation is marked by distortion of the organelles,increase in vacuolation and the appearance of electron-opaquematerial between the sheets of endoplasmic reticulum.Copyright1994, 1999 Academic Press Bryophytes, endomembrane dynamics, Timmiella, ultrastructure, development, tapetum  相似文献   

2.
Tubular inclusions are ubiquitous in the sporogenous plastidsof the moss Timmiella barbuloides (Brid.) Moenk. They have anouter diameter of 26–40 nm and a central lumen of 10–15nm, and occur either singly or in groups of up to 15 parallelelements in the peripheral stroma. The tubules are associatedwith the central isthmus in dividing plastids but lie closeto the extremities during the growth phase. These positionalchanges suggest roles in plastid division, growth and the maintenanceof shape. Bryophytes, mosses, Timmiella barbuloides, sporogenous cell lineage, plastid tubules, ultrastructure  相似文献   

3.
4.
A stable cell line CV-1 was obtained for vital observation of the transport of mitochondria in animals cells, which express a fragment of the resident protein of mitochondria marked by yellow fluorescent protein. The parameters and conditions of movement of the mitochondria in living cells were established using fluorescence videomicroscopy. Under the normal conditions, only a small part of mitochondria (ca. 7%) was transported over significant distances, while others were in the state of relative rest. The effective transport of mitochondria strictly depended on the dynamic properties of microtubules. Incubation of cell in a serum-free medium suppressed active transport of mitochondria, thus suggesting its dependence on certain, not yet determined environmental factors.  相似文献   

5.
6.
Abstract

Panbiogeographic track analysis is applied to the distribution of several groups of mosses which occur in the New Zealand region. The analysis highlights areas of biogeographic interest (nodes) in the New Zealand region as follows: 1. New Guinea, 2. New Caledonia, 3. New South Wales/Queensland border in Australia, 4. northern New Zealand, 5. Rapa Island, 6. subantarctic New Zealand.

New Zealand is connected to these nodes by the following standard tracks: 1. New Guinea—New South Wales/Queensland border—Tasmania—subantarctic New Zealand, 2. New Guinea—New Caledonia—New Zealand—subantarctic New Zealand, 3. a central Tasman Sea transversal track; New South Wales/Queensland border—New Caledonia. Rapa Island is connected to the Tasman region by northern New Zealand and New Caledonia.  相似文献   

7.
The morphological phenotype of the maize meiotic mutant dv (divergent spindle) has been further analysed by visualization of the division spindle and examination of its fine structure in mother cells of pollen. Previous research showed that dv blocks convergence of spindle fibres at the poles. New observations reveal abnormalities caused by this mutation, with dv showing disturbances in nuclear envelope breakdown during vesiculation, preventing the spindle fibres from adopting a bipolar orientation (with convergence on the poles). The anomalies result in radial spindles which are similar to monoastral spindles in animal cells.  相似文献   

8.
The cortical microtubular cytoskeleton of Oxyrrhis marina Dujardin was investigated using indirect immunofluorescence and transmission electron microscopy. The cortical microtubular cytoskeleton is unlike that of other previously examined dinoflagellates because all cortical microtubules are oriented longitudinally and do not attach or abut tranverse microtubular arrays. This difference is considered along with other morphological and cytological variables as indicative of Oxyrrhis's phylogenetic position relative to the Dinophyceae.  相似文献   

9.
Immunofluorescence staining with antibodies to tubulin, neurofilaments and glial filaments was used to study the effects of methylmercury on the differentiation of retinoic acid-induced embryonal carcinoma cells into neurons and astroglia and on the cytoskeleton of these neuroectodermal derivatives. Methylmercury did not prevent undifferentiated embryonal carcinoma cells from developing into neurons and glia. Treatment of committed embryonal carcinoma cells with methylmercury doses exceeding 1 M resulted in the formation of neurons with abnormal morphologies. In differentiated cultures, microtubules were the first cytoskeletal element to be affected. Their disassembly was time- and concentration-dependent. Microtubules in glial cells and in neuronal perikarya were more sensitive than those in neuronal processes. Neurofilaments and glial filaments appeared relatively insensitive to methylmercury treatment but showed reorganization after complete disassembly of the microtubules. The data demonstrate 1) the sensitivity of microtubules of both neurons and glia to methylmercury-induced depolymerization, and 2) the heterogeneous response of neuronalAbbreviations -MEM alpha minimal essential medium - EC embryonal carcinoma cells - FCS fetal calf serum - MAP microtubule-associated protein - MeHg methylmercury - RA retinoic acid  相似文献   

10.
《Journal of bryology》2013,35(2):273-278
Abstract

The spore wall morphology of Timmiella barbuloides (Pottiales, Musci) is described. The spores are catalept, with an ornamentation pattern consisting of unevenly spaced, shortly pedunculated pilum-and gemma-like processes. The spore coat consists of three, unevenly thick layers: intine, exine, and perine. The exine is not involved in wall ornamentation, the processes consisting of perine only. The leptoma, a spore coat area involved in germination, consists of an intine markedly thickening in an area of thinning exine and, outside, with a spore coat area where perinous processes become sparse. On the basis of observations and of the data reported in recent literature the classical definition of the leptoma is modified. It is considered to be a structurally specialized, but not necessarily thin, area.  相似文献   

11.
Mitochondrial movements and morphology are regulated through interactions with the cytoskeletal system, in particular the microtubules. An interaction between the microtubule-associated proteins (MAPs) and the outer surface of rat brain mitochondria has been demonstratedin vitro andin situ. One of the MAPs, MAP2, binds to specific high-affinity sites on the outer membrane. Upon binding, MAP2 is released from microtubules, and it induces a physical alteration in the outer membrane which is characterized by a tighter association of porin with the membrane. It is concluded that MAP2 either binds to porin or to a domain of the outer membrane which alters the membrane environment of porin. The possibility is raised that this domain participates in mitochondrial mobilityin situ.  相似文献   

12.
胡杨小孢子发生及微管骨架变化与异常研究   总被引:1,自引:0,他引:1  
张平冬  康向阳 《西北植物学报》2013,33(11):2166-2171
利用压片法和间接免疫荧光结合DAPI(4′,6-diamidino-2-phenylindole)染色法,对胡杨小孢子母细胞减数分裂过程中微管骨架变化和染色体行为进行观察研究。结果表明:(1)胡杨小胞子母细胞减数分裂进程中染色体行为正常,其中:偶线期可观察到单价体,中期Ⅰ会出现落后染色体,末期Ⅰ和末期Ⅱ的核仁呈现动态变化。(2)胡杨小孢子发生过程中细胞内微管骨架呈动态变化过程,其中:中期Ⅱ形成平行纺锤体以及三极纺锤体;末期Ⅱ未观察到典型的成膜体结构,同时型胞质分裂受子核间辐射微管系统调节,通过胞质向心收缩而发生,胞质分裂后形成四边形和四面体型四分体。(3)胡杨小孢子母细胞减数分裂过程中还存在各种异常细胞学现象,其中:中期Ⅱ平行纺锤体发生融合;中期Ⅱ 和后期Ⅱ孢母细胞两个纺锤体间的胞质会出现裂沟;四分体时期存在三分体和二分体,并产生天然2n花粉和连体花粉。  相似文献   

13.
Sporogenesis in the hepatic Marchantia polymorpha L. provides an outstanding example of the pleiomorphic nature of the plant microtubule organizing center (MTOC). Microtubules are nucleated from γ-tubuUn in MTOCs that change form during mitosis and meiosis. Following entry of cells into the reproductive pathway of sporogenesis, successive rounds of mitosis give rise to packets of 4-16 sporocytes. Mitotic spindles are organized at discrete polar organizers (POs), a type of MTOC that is unique to this group of early divergent land plants. An abrupt and radical transformation in microtubule organization occurs when sporocytes enter meiosis: POs are lost and γ-tubulin is closely associated with surfaces of two large elongated plastids that subsequently divide into four. Migration of the four plastid MTOCs into a tetrahedral arrangement establishes the future spore domains and the division polarity of meiosis. As is typical of many bryophytes, cones of microtubules from the four plastid MTOCs initiate a quadripolar microtubule system (QMS) in meiotic prophase. At this point a transformation in the organization of the MTOCs occurs. The γ-tubulin detaches from plastids and forms a diffuse spheroidal pole in each of the spore domains. The plastids, which are no longer MTOCs, continue to divide. The diffuse MTOCs continue to nucleate cones of microtubules during transformation of the QMS to a bipolar spindle. Following meiosis I, γ-tubulin is associated with nuclear envelopes, and the spindles of meiosis II are organized from diffuse MTOCs at the tetrad poles. At simultaneous cytokinesis, radial microtubule systems are organized at nuclear envelope MTOCs in each of the tetrad members.  相似文献   

14.
Microtubule associated proteins (MAPs) are proteins that physically bind to microtubules in eukaryotes. MAPs play important roles in regulating the polymerization and organization of microtubules and in using the ensuing microtubule arrays to carry out a variety of cellular functions. In plants, MAPs manage the construction, repositioning, and dismantling of four distinct microtubule arrays throughout the cell cycle. Three of these arrays, the cortical array, the preprophase band, and the phragmoplast, are prominent to plants and are responsible for facilitating cell wall deposition and modification, transducing signals, demarcating the plane of cell division, and forming the new cell plate during cytokinesis. This review highlights important aspects of how MAPs in plants establish and maintain microtubule arrays as well as regulate cell growth, cell division, and cellular responses to the environment.  相似文献   

15.
16.
17.
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath plasma membrane, which has an important role in preserving cell morphology and plasma membrane permeability. The aim of this study was to examine the role of AMN in maintaining plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptosis in H460 cells that AMN delimits an active caspase free area beneath plasma membrane that permits the preservation of cellular cortex and transmembrane proteins. AMN depolymerization in apoptotic cells by a short exposure to colchicine allowed active caspases to reach the cellular cortex and cleave many key proteins involved in plasma membrane structural support, cell adhesion and ionic homeostasis. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase (FAK), E-cadherin and integrin subunit β4 was associated with cell collapse and cell detachment. Otherwise, cleavage-mediated inactivation of calcium ATPase pump (PMCA-4) and Na+/Ca2+ exchanger (NCX) involved in cell calcium extrusion resulted in calcium overload. Furthermore, cleavage of Na+/K+ pump subunit β was associated with altered sodium homeostasis. Cleavage of cell cortex and plasma membrane proteins in apoptotic cells after AMN depolymerization increased plasma permeability, ionic imbalance and bioenergetic collapse, leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the concomitant addition of colchicine that induces AMN depolymerization and the pan-caspase inhibitor z-VAD avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Furthermore, the presence of AMN was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that AMN is essential to preserve an active caspase free area in the cellular cortex of apoptotic cells that allows plasma membrane integrity during the execution phase of apoptosis.  相似文献   

18.
We have studied in detail the immunofluorescence localizations of Tetrahymena 14-nm filament-forming protein (49-kDa protein) in relation to tubulin in conjugating wild-type Tetrahymena thermophila (B strain) pairs and in pairs between B strain and star strains with defective micronuclei. The results suggest that germ nuclear behavior during conjugation may involve the following cytoskeletal structures: (1) during meiosis, microtubule structures are involved in micronuclear elongation and meiotic division; (2) at the postmeiotic stage, 49-kDa protein network structures that are formed independently of the existence of pronuclei are involved in the selection and the survival of one of four meiotic products; (3) during the third prezygotic division, gametic pronuclear transfer, and zygote formation, a cytoskeletal structure in which the 49-kDa protein colocalizes with microtubules and which is dependent on the existence of a normal gametic pronucleus is involved in gametic pronuclear behavior, and (4) during the postzygotic divisions, the microtubules are involved in nuclear behavior.  相似文献   

19.
The molecular structure of aldehydes is closely related to their antimicrotubular effect. Morphological modifications of the microtubular system in living cells after incubation with certain aldehydes are consistent with biochemical alterations detected in previous research. The microtubular arrangement was visualized by an immunofluorescence technique with antitubulin antibodies, while the content of tubulin in the cells was evaluated by a colchicine binding assay. 2-Nonenal behaved similarly to 4-hydroxynonenal, a lipid peroxidation product, disorganizing microtubular network in 3T3 fibroblasts and decreasing the amounts of tubulin able to bind labelled colchicine. Nonanal did not significantly impair the tubulin characteristics in the cells, despite the fact that it has been shown to be active on the purified microtubular system; benzaldehyde was ineffective. This would appear to explain the mechanisms of interaction of aliphatic aldehydes which might be suitable for use as antimicrotubular drugs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号