首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Immunofluorescence and TEM studies of meiosis in two mosses (Bryophyta) provide evidence that the prophasic tetrahedral system of microtubules contributes directly to the metaphase I spindle. Intense staining of tubulin, conspicuously absent around the nuclear envelope, is first seen associated with plastids. By mid-prophase, microtubules radiate from the plastids to the nuclear envelope and become organized into six bands that interconnect the four plastids, forming a tetrahedral cytoskeleton surrounding the nucleus. During transition of prophase to metaphase, the four poles of the tetrahedral microtubule system converge in pairs toward opposite cleavage furrows. Opposite furrows occupy mutually perpendicular planes and the pair of microtubule focal points straddling one furrow lies at right angles to the pair straddling the opposite furrow. Additional microtubules terminate in numerous small clusters in the concave polar regions arching over the cleavage furrows. By early anaphase, the microtubule focal points lie very close to the division axis. We conclude that microtubules recruited from the prophasic quadripolar system are incorporated into the mature metaphase I spindle and the two principal focal points at each pole are those derived from poles of the prophasic quadripolar system.  相似文献   

2.
Summary InSaprolegnia, kinetochore microtubules persist throughout the mitotic nuclear cycle but, whilst present at leptotene, they disappear coincidently with the formation of synaptonemal complexes at pachytene and reform at metaphase I. In some other fungi chromosomal segregation is random in meiosis and non-random in mitosis. The attachment of chromosomes to persistent kinetochore microtubules in mitosis, but not meiosis, inSaprolegnia provides a plausible explanation for such behaviour. At metaphase I each bivalent is connected to the spindle by 2 laterally paired kinetochore microtubules whereas at metaphase II (as in mitosis) each univalent bears only one kinetochore microtubule, thus showing that all kinetochores are fully active at all stages of meiosis.  相似文献   

3.
Brown RC  Lemmon BE 《Protoplasma》2006,227(2-4):77-85
Summary. Meiosis in Aneura pinguis is preceded by extensive cytoplasmic preparation for quadripartitioning of the diploid sporocyte into a tetrad of haploid spores. In early prophase the four future spore domains are defined by lobing of the cytoplasm and development of a quadripolar prophase spindle focused at polar organizers (POs) centered in the lobes. Cells entering the reproductive phase become isolated and, instead of hooplike cortical microtubules, have endoplasmic microtubule systems centered on POs. These archesporial cells proliferate by mitosis before entering meiosis. In prophase of each mitosis, POs containing a distinct concentration of γ-tubulin appear de novo at tips of nuclei and initiate the bipolar spindle. Cells entering meiosis become transformed into quadrilobed sporocytes with four POs, one in each lobe. This transition is a complex process encompassing assembly of two opposite POs which subsequently disperse into intersecting bands of microtubules that form around the central nucleus. The girdling bands define the future planes of cytokinesis and the cytoplasm protrudes through the restrictive bands becoming quadrilobed. Two large POs reappear in opposite cleavage furrows. Each divides and the resulting POs migrate into the tetrahedral lobes of cytoplasm. Cones of microtubules emanating from the four POs interact to form a quadripolar microtubule system (QMS) that surrounds the nucleus in meiotic prophase. The QMS is subsequently transformed into a functionally bipolar metaphase spindle by migration of poles in pairs to opposite cleavage furrows. These findings contribute to knowledge of microtubule organization and the role of microtubules in spatial regulation of cytokinesis in plants. Correspondence and reprints: Department of Biology, University of Louisiana-Lafayette, Lafayette, LA 70504-2451, U.S.A.  相似文献   

4.
Microtubules in dividing root cells of the gymnosperms Pinus radiata (conifer) and Zamia furfuracea (cycad) were examined using immunofluorescence techniques. Root tip squashes were prepared to visualize the 3-dimensional organization of microtubules in intact cells while sections of methacrylate embedded roots revealed microtubules in situ. Both species were characterized by well developed preprophase bands (PPB) of microtubules and highly focused spindle poles at prophase and anaphase. The metaphase spindle and telophase phragmoplast appeared typical of flowering plants.  相似文献   

5.
To understand the unusual polar body formation in the androgenetic clam, Corbicula leana, whole-mount eggs stained with monoclonal antibodies against α-tubulin, γ-tubulin, and 4’-6’-diamidino-2-phenylindole were examined. The meiotic spindle was located at the peripheral region of the egg at metaphase I, and its axis was parallel to the egg surface. After segregation of chromosomes at anaphase I, cytoplasmic bulges formed at both meiotic spindle pole sites. Centrosomes were located at the apical portion of the each bulge. From the apical portion of the bulge a bundle of astral microtubules radiated toward the bulge base in late anaphase resembling a half spindle. Maternal chromosomes and both centrosomes were all distributed in two ”first polar bodies” and were eventually discarded. After the polar body formation only one male pronucleus existed in the egg cytoplasm. The present study showed that the anaphase microtubules originating from a single aster can induce the polar body formation without overlapping of microtubules from the opposing aster. Received: 29 September 1999 / Accepted: 24 November 1999  相似文献   

6.
Summary The three-dimensional structure of the spindle pole body (SPB) and meiotic spindle during early metaphase I through telophase I inPuccinia malvacearum is analyzed ultrastructurally from serial sections. During early metaphase I the spindle rotates from the perpendicular to a position oblique to the longitudinal axis and parallel to the sagittal plane of the cell. Tubular cisternae are present within the spindle at this stage. The half middle piece (MP) subtends a collateral disc (co-disc) which is inserted eccentrically within each SPB. The SPB, co-disc and half MP at opposite poles are in mirror image. During the transition from early metaphase I to full metaphase I, the spindle orients parallel to the lateral wall of the promycelium and the half MPs are lost. The co-discs partially detach from each discoid SPB and maintain this relation until the end of interphase I. Co-discs become further differentiated as they attach to the subtending sheath-like extension of the nuclear envelope previously occupied by the half MPs. Microvesicles within the nucleoplasm are specific to mid metaphase I. A metaphase plate is absent. The 14 bivalents, which are directly connected to each polar SPB by 2 to 3 kinetochore MTs, are spread over nearly the entire length of the central spindle. The first anaphasic movement involves asynchronous shortening of the kinetochore MTs while the second consists of extensive pole-to-pole elongation. Astral MTs first appear at early metaphase I and become most numerous at anaphase I. An intact nuclear envelope constricts against the central spindle at either end of the interzonal region. Concurrently, centripetal growth of the nuclear envelope under each SPB results in their gradual externalization by the end of telophase I. The sibling nuclei are cut off by constriction of the nuclear envelope at either end of the interzonal region. These meiotic stages inP. malvacearum are compared with those in other basidiomycetes and ascomycetes.  相似文献   

7.
Summary A thoroughly documented account of the ultrastructure of the meiotic spindle pole body (SPB) cycle in a rust (Basidiomycota, Uredinales) is presented for the first time. The three-dimensional structure of the SPB and spindle during meiosis in the hollyhock rust fungusPuccinia malvacearum is analyzed from serial sections of preselected stages. This paper covers prophase I to prometaphase I. At late prophase I, the nucleolus disperses and does not reappear until the end of meiosis. The SPB at late prophase I consists of two, 4-layered discs, 0.8–1.0 m in diameter, connected by a middle piece (MP). The SPB is associated with a differentiated region of the nuclear envelope and nucleoplasm. At late diplotene to diakinesis, each disc generates a half spindle as it inserts into an otherwise intact nuclear envelope. The MP connecting the interdigitating half spindles elongates and eventually splits transversely during subsequent spindle elongation. Each half MP, which is attached to a SPB disc, becomes inserted in a sheath-like extension of the nuclear envelope. The intranuclear late prometaphase I spindle always becomes oriented perpendicularly to the longitudinal axis and sagittal plane of the metabasidium. There are 200–290 spindle microtubules (MTs) at each SPB at late prometaphase. The nonkinetochore MTs form a coherent central spindle around which the kinetochore MTs and bivalents are spread. A metaphase plate is absent. The results are compared with SPB behavior and spindle structure in early meiosis of other basidiomycetes and ascomycetes.  相似文献   

8.
Mature Drosophila oocytes are arrested in metaphase of the first meiotic division. We have examined microtubule and chromatin reorganization as the meiosis I spindle assembles on maturation using indirect immunofluorescence and laser scanning confocal microscopy. The results suggest that chromatin captures or nucleates microtubules, and that these subsequently form a highly tapered spindle in which the majority of microtubules do not terminate at the poles. Nonexchange homologs separate from each other and move toward opposite poles during spindle assembly. By the time of metaphase arrest, these chromosomes are positioned on opposite half spindles, between the metaphase plate and the spindle poles, with the large nonexchange X chromosomes always closer to the metaphase plate than the smaller nonexchange fourth chromosomes. Nonexchange homologs are therefore oriented on the spindle in the absence of a direct physical linkage, and the spindle position of these chromosomes appears to be determined by size. Loss-of-function mutations at the nod locus, which encodes a kinesin-like protein, cause meiotic loss and nondisjunction of nonexchange chromosomes, but have little or no effect on exchange chromosome segregation. In oocytes lacking functional nod protein, most of the nonexchange chromosomes are ejected from the main chromosomal mass shortly after the nuclear envelope breaks down and microtubules interact with the chromatin. In addition, the nonexchange chromosomes that are associated with spindles in nod/nod oocytes show excessive poleward migration. Based on these observations, and the structural similarity of the nod protein and kinesin, we propose that nonexchange chromosomes are maintained on the half spindle by opposing poleward and anti-poleward forces, and that the nod protein provides the anti-poleward force.  相似文献   

9.
Harald Fuge 《Chromosoma》1973,43(2):109-143
One metaphase I spindle, seven anaphase I spindles of different stages, and one metaphase II spindle were sectioned in series. The ultrastructure of chromosomes was examined and microtubules (MTs) were counted. The main results of the study are summarized as follows: 1. The autosomes move at the periphery of the continuous MTs during anaphase while the sex chromosomes move more or less within this group of MTs. 2. In metaphase the antosomes have few coarse surface projections, in anaphase many, but more delicate projections of irregular shape which seem to transform into regular radial lamellae at the end of movement. 3. In metaphase continuous MTs have no contact with the chromosomal surface, while during anaphase movement continuous MTs lie closer to the chromosomes, and finally arrange themselves between the radial surface lamellae. There they show lateral filamentous connections with the chromosomal surface. 4. The MT distribution profiles of metaphase and anaphase are different. While the highest density of MTs is observed in the middle region of the spindle in metaphase, there are two density zones during autosomal movement, each in one half spindle in front of the autosomes. After the autosomes have reached the poles the distribution profile is again similar to the metaphase condition. The MT distribution in metaphase II is the same as in metaphase I. Possible explanations for these observations are discussed in detail. 5. There is an overall decrease in MT content during anaphase. 6. With the onset of anaphase MTs are seen within the spindle mantle, closely associated with mitochondria. — Several theoretical aspects of anaphase mechanism are briefly discussed.  相似文献   

10.
Summary An extensive system of microtubules develops during meiotic prophase in the mossRhynchostegium serrulatum (Hedw.)Jaeg. &Sauerb. Development of the cytoskeleton can be traced to early prophase when the nucleus is acentric and the single plastid divides into four plastids. The cytoskeletal microtubules are associated with equidistant positioning of the four plastids at the distal tetrad poles and with migration of the nucleus to a central position in the sporocyte. The cytoskeleton, which interconnects plastids and encloses the nucleus, contributes to the establishment of moss sporocyte polarity. Just prior to metaphase I evidence of the prophase cytoskeleton is lost as the bipolar metaphase I spindle develops in association with discrete polar organizers located in opposite cleavage furrows between plastids.  相似文献   

11.
As the earliest divergent land plants, bryophytes (mosses, hornworts, and liverworts) provide insight into the evolution of the unique plant process of sporogenesis by which meiosis results in heavy walled spores. New immunohistochemical data on microtubules and γ-tubulin in four genera of complex thalloid liverworts combined with previously published data on another four genera demonstrate grades in the evolution of spindle organization in meiosis. We have discovered that all recognized forms of microtubule organizing centers (MTOCs) in plant cells (plastid MTOCs, spheroid cytoplasmic MTOCs, polar organizers, and nuclear envelope MTOCs) occur in organization of the meiotic spindle of complex thalloid liverworts. In addition, all aspects of pre-meiotic preparation for quadripartitioning of the sporocyte into a tetrad of spores occur, with the exception of pre-meiotic wall precursors found in certain simple thalloids. The preparation includes morphogenetic plastid migration, cortical bands of microtubules that mark future cytokinetic planes in pre-meiosis, quadrilobing of the cytoplasm during meiotic prophase, and quadripolar microtubule systems that are transformed into functionally bipolar metaphase I spindles. Quadripolar spindle origin is typical of bryophyte sporogenesis even though the MTOCs involved may differ. However, in certain crown taxa of complex thalloids the spindle develops with no traces of quadripolarity and placement of intersporal walls is determined after meiosis, as is typical of higher plants.  相似文献   

12.
D. Motzko  A. Ruthmann 《Chromosoma》1990,99(3):212-222
The fate of intracellular membranes stained by the osmium ferricyanide (OsFeCN) procedure was followed from premeiotic interphase to interkinesis inDysdercus intermedius. During diakinesis the centrioles forming primary cilia attach temporarily with their proximal ends to the nuclear envelope which is stretched from pole to pole. Breakdown of the nuclear envelope is preceded by deep indentations with microtubules from growing asters. Vesicles of smooth endoplasmic reticulum which accumulate gradually in the course of prophase contribute to the ensheathment of the chromosomes with membranes. When the nuclear envelope breaks down, the polar parts of the formerly perinuclear membranes follow the ingrowth of the spindle microtubules towards the cell equator where the seven bivalents are arranged in a circle with the X1X2 sex chromosomes in the centre. The metaphase I spindle thus contains longitudinally oriented membranes between the poles, membranous envelopes around all chromosomes and radial connections from the autosomes to the sex chromosomes in the centre. At anaphase the homologues leave their common sheath and a microtubular stembody surrounded by membranes appears between the receding dyads. In the interkinetic nucleus the gonosomes are separated from the autosomes by a common membranous sheath which may be instrumental in their joint assignment to only one pole in the second meiotic division. Calcium sequestering sites visualized by oxalate precipitation are the Golgi lamellae and vesicles derived from them that surround the whole spindle body.  相似文献   

13.
At prophase in Pleurastrum, extranuclear spindle microtubules develop from the region of centrioles, which lie lateral to the nucleus midway between the future sites of the metaphase spindle poles. The microtubules then move laterally to overarch the nucleus and finally become incorporated into the spindle. The centrioles do not migrate and therefore lie in the same plane as the chromosomes at metaphase. At telophase, 2, more different systems of microtubules develop from the vicinity of the centrioles—a phycoplast and extensive arrays of microtubules that ensheath the daughter nuclei. Cell division in the filamentous Pleurastrum is compared to that in the green flagellate, Platymonas. The similarities between cell division in the 2 algae are interpreted as evidence: (i) that rhizoplasts (which in Platymonas resemble myofibrils) are somehow homologous to microtubules; and, (ii) that cell division in Pleurastrum differs from cell division in other examined filamentous chlorophycean genera because Pleurastrum has an independent evolutionary origin from a monad with Platymonas-like characteristics.  相似文献   

14.
Meiosis and the meiotic spindle pole body cycle were studied electron microscopically in basidia of the heterobasidiomycetePachnocybe ferruginea. Spindle pole body splitting in prometaphase I and II, and intermeiotic and postmeiotic duplication were investigated in particular detail. During prophase, the spindle pole body consists of two three-layered discs connected by a middle piece. At late prophase I and again in prometaphase II, the discs contact the nuclear envelope. Then, the nuclear membrane at the contact area is separated from the non-contacted part of the nuclear envelope and finally disappears. Each disc nests into the nuclear opening of the otherwise intact nuclear envelope. The disc remains in the gap and generates a half spindle. At late metaphase I, a co-disc develops eccentrically within the parent disc. The co-disc detaches from the parent disc during interphase I and becomes one of the metaphase II spindle pole bodies. Co-discs are absent during the second division. A cap of endoplasmic reticulum encloses each disc during prophase I through anaphase I. In the second meiotic division, the caps covering the spindle pole bodies of one nucleus of the pair, are developed from the neighbouring nucleus. Spindle pole bodies ofP. ferruginea are similar to those of the rusts, and especially to those ofEocronartium muscicola andHelicobasidium mompa. Part 73 of the series Studies inHeterobasidiomycetes.  相似文献   

15.
Summary Changes in the spindle pole body (SPB) and meiotic nuclei from interphase I through interphase II in the hollyhock rustPuccinia malvacearum are analyzed ultrastructurally by three-dimensional reconstructions from serial sections. Interphase I nuclei undergo a coordinated migration and rotation during which the SPBs approach the convex face of the lateral promycelial wall. During the transition from interphase I to prometaphase II, the collateral disc (co-disc) apparently enlarges and fuses with the main disc of the SPB. The resulting single SPB nucleates two confluent half spindles and about 225 astral microtubules (MTs). Co-discs and middle pieces (MPs) are absent during division II. SPBs separate and form metaphase II intranuclear spindles oriented in a predictable manner. Tubular cisternae are present within the spindle at early metaphase II. The architecture of the spindle at division II is essentially identical to that reported for division I except that the spindle is about half as long. Anaphase-telophase II nuclear envelope constriction, separation of the sibling nuclei, and externalization of the SPBs is identical to that reported for division I. Genesis of the duplicated interphase II SPB apparently occurs rapidly and involves formation of the MP followed by the three-layered SPB discs. General aspects of the division II spindle are discussed. A model for the meiotic SPB cycle in a rust is presented and its phylogenetic and functional significance in relation to other basidiomycetes and ascomycetes is discussed.  相似文献   

16.
The structure of centric, intranuclear mitosis and of organelles associated with nuclei are described in developing zoosporangia of the chytrid Rhizophydium spherotheca. Frequently dictyosomes partially encompass the sides of diplosomes (paired centrioles). A single, incomplete layer of endoplasmic reticulum with tubular connections to the nuclear envelope is found around dividing nuclei. The nuclear envelope remains intact during mitosis except for polar fenestrae which appear during spindle incursion. During prophase, when diplosomes first define the nuclear poles, secondary centrioles occur adjacent and at right angles to the sides of primary centrioles. By late metaphase the centrioles in a diplosome are positioned at a 40° angle to each other and are joined by an electron-dense band; by telophase the centrioles lie almost parallel to each other. Astral microtubules radiate into the cytoplasm from centrioles during interphase, but by metaphase few cytoplasmic microtubules are found. Cytoplasmic microtubules increase during late anaphase and telophase as spindle microtubules gradually disappear. The mitotic spindle, which contains chromosomal and interzonal microtubules, converges at the base of the primary centriole. Throughout mitosis the semipersistent nucleolus is adjacent to the nuclear envelope and remains in the interzonal region of the nucleus as chromosomes separate and the nucleus elongates. During telophase the nuclear envelope constricts around the chromosomal mass, and the daughter nuclei separate from each end of the interzonal region of the nucleus. The envelope of the interzonal region is relatively intact and encircles the nucleolus, but later the membranes of the interzonal region scatter and the nucleolus disperses. The structure of the mitotic apparatus is similar to that of the chytrid Phlyctochytrium irregulare.  相似文献   

17.
J. L. Oud  G. K. Rickards 《Chromosoma》1993,102(10):728-733
We examined the three-dimensional arrangement of bivalents and, in particular, a chain of four chromosomes (chain quadrivalent) in the metaphase I spindle of pollen mother cells ofAllium triquetrum by confocal microscopy. Firstly, we show by optical sectioning and three-dimensional image reconstruction that the cooriented pairs of centromeres of all seven bivalents lie virtually parallel to each other in the metaphase I spindle, parallel to the long axis of the spindle. Secondly, we like-wise show that the four centromeres of the chain quadrivalent are aligned in the metaphase I spindle in, essentially, atwo-dimensional array, not in a three-dimensional array, as proposed by some other authors. This two-dimensionality has its basis, we argue, in the principle that poleward directed spindle forces minimise centromere-to-pole distances and therefore align pairs of centromeres connected to opposite poles most axially (vertically) in the spindle. These distances are minimised for the quadrivalent as a whole only when it lies in two dimensions, i.e. in aplane parallel to the spindle axis.  相似文献   

18.
F. W. Spiegel 《Protoplasma》1982,113(3):178-188
Summary Mitosis in the protostelidPlanoprotostelium aurantium Olive andStoianovich is characterized by an open, centric spindle. The nuclear envelope breaks down prior to metaphase, begins to reform during late anaphase, and is complete by telophase. Centrioles are present at the poles throughout mitosis and are devoid of rootlet microtubules from metaphase to late anaphase. Chromosomes are small and numerous and are attached to single kinetochore microtubules during metaphase and early anaphase. Chromosome separation takes place by a presumed shortening of the chromosome to pole spindle followed by a lengthening of the interzonal spindle. Mitosis inP. aurantium is similar to that of certain other protostelid amoebae and to myxomycete amoebae, but it is considerably different from that of dictyostelid amoebae. The phylogenetic significance of this is discussed.This research represents part of a Ph.D. dissertation presented to the University of North Carolina.  相似文献   

19.
T. M. Butt  A. Beckett 《Protoplasma》1984,120(1-2):72-83
Summary An account of mitosis in the aphid-pathogenic, entomophthoraceous fungusErynia neoaphidis is presented. The mitotic apparatus is characterized by a closed, intranuclear, polarized spindle. Chromosomes are permanently attached by kinetochore microtubules (kcMTs) to the poles during mitosis. The spindle develops as the spindle pole bodies migrate and separate. At metaphase the eccentric spindle contains only kcMTs and is located in a relatively chromatinfree zone. Paired sister kinetochores are arranged in a broad metaphase plate. During anaphase kcMTs shorten, astral and nonchromosomal microtubules develop and elongate and the interpolar distance increases.  相似文献   

20.
Individual bivalents or chromosomes have been identified in Drosophila melanogaster spermatocytes at metaphase I, anaphase I, metaphase II and anaphase II in electron micrographs of serial sections. Identification was based on a combination of chromosome volume analysis, bivalent topology, and kinetochore position. — Kinetochore microtubule numbers have been obtained for the identified chromosomes at all four meiotic stages. Average numbers in D. melanogaster are relatively low compared to reported numbers of other higher eukaryotes. There are no differences in kinetochore microtubule numbers within a stage despite a large (approximately tenfold) difference in chromosome volume between the largest and the smallest chromosome. A comparison between the two meiotic metaphases (metaphase I and metaphase II) reveals that metaphase I kinetochores possess twice as many microtubules as metaphase II kinetochores. — Other microtubules in addition to those that end on or penetrate the kinetochore are found in the vicinity of the kinetochore. These microtubules penetrate the chromosome rather than the kinetochore proper and are more numerous at metaphase I than at the other division stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号