首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Several aspects of genotype-environment interaction may act to modulate natural selection in populations that encounter variable environments. In this study the norms of reaction (phenotypic responses) of 20 cloned genotypes from two natural populations of the annual plant Polygonum persicaria were determined over a broad range of controlled light environments (8%-100% full sun). These data reveal both the extent of functionally adaptive phenotypic plasticity expressed by individual genotypes, and the patterns of diversity among genotypes for characters relevant to fitness, in response to an environmental factor that is both highly variable within populations and critical to growth and reproduction.  相似文献   

2.
Norms of reaction for a number of growth and reproductive characters were determined for 15 randomly sampled Polygonum persicaria genotypes, from two natural populations originating in sites with very different nutrient availabilities. Under severely limiting nutrient conditions, these genotypes shared not only plastic responses such as increased root-to-shoot ratio, but a surprising constancy in such functionally essential characters as leaf area ratio, leaf nitrogen concentration, and propagule nitrogen content. Because functional homeostasis depends on flexibility in underlying characters, similar homeostatic results can be achieved through different combinations of underlying plastic and fixed responses in genetically different entities. For example, plants in each population maintained a relatively constant propagule nitrogen content under extreme low-nitrogen conditions by varying either the size or the tissue nitrogen concentration of propagules. These genotypes also tolerated excessive nutrient levels toxic to many plants, evidently by storing excess nutrients in shoots. Although development was altered under such circumstances, reproductive fitness was maintained.  相似文献   

3.
The plasticity of ovariole number relative to developmental temperature was studied in three populations of Drosophila melanogaster at both ends of the cline: a temperate French population and two equatorial Congolese. Ovary size was much greater in the French flies, in agreement with an already known latitudinal cline. Among isofemale lines, significant differences in genetic variability were observed between populations with a maximum variability at intermediate temperatures. Parameters of phenotypic variability (CV and FA) were not statistically different among lines or populations, but a significant increase at low temperature was demonstrated for both. The shapes of the response curves (i.e., the norm of reaction) were analyzed by adjusting the data to a quadratic equation. The parameters of the equation were highly variable among lines. On the other hand, the temperature for maximum value of ovarioles (TMV) was much less variable and exhibited only a slightly significant difference between temperate and tropical flies (22.2°C vs. 22.7°C). During its geographic extension toward colder places, D. melanogaster underwent a large, presumably adaptative, increase in ovariole number but very little change in the norm of reaction of that trait.  相似文献   

4.
Cheilostome bryozoan species show long-term morphologic stasis, implying stabilizing selection sustained for millions of years, but nevertheless retain significant heritable variation in traits of skeletal morphology. The possible role of within-genotype (within-colony) phenotypic variability in preserving genetic diversity was analyzed using breeding data for two species of Stylopoma from sites along 110 km of the Caribbean coast of Panama. Variation among zooids within colonies accounts for nearly two-thirds of the phenotypic variance on average, increases with environmental heterogeneity, and includes significant genotype-environment interaction. Thus, within-colony variability apparently represents phenotypic plasticity, at least some of which is heritable, rather than random “developmental noise.” Almost all of the among-colonies component of phenotypic variance is accounted for by additive genetic differences in trait means, suggesting that within-colony plasticity includes virtually all of the environmental component of phenotypic variance in these populations of Stylopoma. Thus, heritable within-colony plasticity could play a significant part in maintaining genetic diversity in cheilostomes, but it is also possible that rates of polygenic mutation alone are sufficient to balance the effects of selection.  相似文献   

5.
To investigate the potential response to natural selection of reaction norms for age and size at maturity, fresh body weight at eclosion was mass selected under rich and poor larval food conditions in Drosophila melanogaster. The sensitivity of dry weight at eclosion to the difference between rich and poor larval food was selected using differences in sensitivities among families. For both experiments, the correlated response to selection of age at eclosion was examined. The flies were derived from wild populations and had been mass cultured in the lab for more than six months before the experiments started. These flies responded to selection on body weight upwards and downwards on both rich and poor larval food. Selection on increased or decreased sensitivity of body weight was also successful in at least one direction. Sensitivity was reduced by selection upwards in a poor environment and downwards in a rich environment.  相似文献   

6.
7.
Phenotypic plasticity in life-history traits is common. The relationship between phenotype and environment, or reaction norm, associated with life-history plasticity can evolve by natural selection if there is genetic variation within a population for the reaction norm and if the traits involved affect fitness. As with other traits, selection on plasticity in a particular trait or in response to a particular environmental factor may be constrained by trade-offs with other traits that affect fitness. In this paper, I experimentally evaluated broad-sense genetic variation in the reaction norms of age and size at metamorphosis in response to two environmental factors, food level and temperature. Differences among full-sib families in one or both traits were evident in all treatments. However, variation among families in their responses to each treatment (genotype-environment interaction) resulted in variation among treatments in estimated heritabilities and genetic correlations. Age at metamorphosis was equally sensitive to temperature in all families, but size at metamorphosis was more sensitive to temperature in some families than in others. Size at metamorphosis was equally sensitive to food level in all families, but age at metamorphosis was sensitive to food in some families but not in others. At high temperature or low food, the genetic correlation between age and size at metamorphosis was positive, generating a potential trade-off between metamorphosing early to attain higher larval survival and metamorphosing later to achieve larger size. This trade-off extends across treatments: families with the largest average size at metamorphosis achieved larger size with the longest average and greatest plasticity in age at metamorphosis. Other families achieved shorter average larval periods by exhibiting greater plasticity in size at metamorphosis but had the smallest average size at metamorphosis. This trade-off may reflect an underlying functional constraint on the ability to respond optimally to all environments, resulting in persistent genetic variation in reaction norms.  相似文献   

8.
Recent research has emphasized the importance of investigating the reaction norms of quantitative traits to understand evolution in natural environments. In this study, genetic differences in reaction norms among eight populations of the grass Bouteloua rigidiseta were examined using clonal replicates of genotypes planted in a common garden with two levels of competition (single B. rigidiseta without competition and single B. rigidiseta surrounded by four Erioneuron pilosum). The populations were found to be genetically differentiated for a variety of traits. Differences in reaction norms of size-specific fecundity (spikelet clusters per tiller number) were detected among the populations: some showed little response to competition; in others size-specific fecundity was much greater in the absence of competition. This divergence in reaction norms among these populations may be the result of past selection (including the cost of plasticity), or genetic drift.  相似文献   

9.
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.  相似文献   

10.
In a heterogeneous world, the optimal strategy for an individual is to continually change its phenotype to match the optimal type. However, in the real world, organisms do not behave in this fashion. One potential reason why is that phenotypic plasticity is costly. We measured production and maintenance costs of plasticity in the freshwater crustacean Daphnia pulex (Cladocera: Crustacea) in response to the presence of chemical signals from a predator, the insect Chaoborus americanus. We looked at three changes in juvenile body size and shape: body length, body depth, and tailspine length. Fitness costs were measured as changes in adult growth and fecundity, and summarized as the intrinsic rate of increase (r) for individuals reared in the presence or absence of Chaoborus extract. The cost of plasticity was measured as a multiple regression of mean clone fitness against trait and trait plasticity. We found scant evidence for either production or maintenance costs of plasticity. We also failed to find direct costs of these juvenile structures, which is surprising, as others have found such costs. We attribute the lack of measurable direct or plasticity costs to a decrease in metabolic rates in the presence of the Chaoborus extract. This decrease in metabolic rate may have compensated for any cost increases. We call for more extensive measures of the costs of plasticity, especially under natural conditions, and the incorporation of costs into evolutionary models.  相似文献   

11.
The evolution of phenotypic plasticity is studied in a model with two reproductively isolated “species” in a coarse-grained environment, consisting of two types of habitats. A quantitative genetic model for selection was constructed, in which habitats differ in the optimal value for a focal trait, and with random dispersal among habitats. The main interest was to study the effects of different selection regimes. Three cases were investigated: (1) without any limits to plasticity; (2) without genetic variation for plasticity; and (3) with a fitness cost for phenotypically plastic reactions. In almost all cases a generalist strategy to exploit both habitats emerged. Without any limits to plasticity, optimal adaptive reactions evolved. Without any genetic variation for plasticity, a compromise strategy with an intermediate, fixed phenotype evolved, whereas in the presence of costs a plastic compromise between the demands of the habitats and the costs associated with plasticity was found. Specialization and phenotypic differentiation was only found when selection within habitats was severe and optimal phenotypes for different habitats were widely different. Under soft selection (local regulation of population numbers in each habitat) the specialists coexisted; under hard selection (global regulation of population numbers) one specialist outcompeted the other. The prevalent evolutionary outcome of compromises rather than specialization implies that costs or constraints are not necessarily detectable as local adaptation in transplantation or translocation experiments.  相似文献   

12.
For plants, light availability is an important environmental factor that varies both within and between populations. Although the existence of sun and shade “ecotypes” is controversial, it is often assumed that trade-offs may exist between performance in sun and in shade. This study therefore investigated variation in reaction norms to light availability within and between two neighboring natural populations of the annual Impatiens capensis, one in full sun and the other in a forest understory. Seedlings were collected randomly from both populations and grown to maturity in a greenhouse under two light conditions: full light and 18% of full light. Selfed full-sib seed families were collected from plants from both populations grown in both parental light environments. To characterize family reaction norms, seedlings from each family were divided into the same two light treatments and individuals were scored for a variety of morphological and life-history traits. The maternal light environment had little impact on progeny reaction norms. However, the two study populations differed both qualitatively and quantitatively in plastic response to light availability (indicated by significant population x environment interactions in mixed-model ANCOVA). Much of this difference was attributable to population differences in light sensitivity of axillary meristem allocation patterns, which produced concurrent differences in reaction norms for a suite of developmentally linked traits. Within each population, different sets of traits displayed significant variation in plasticity (indicated by significant family x environment interactions). Thus, the genetic potential for evolutionary response to selection in heterogeneous light environments may differ dramatically between neighboring plant populations. Between-environment genetic correlations were largely positive in the woods population and positive or nonsignificant in the sun population; there was no evidence for performance trade-offs across environments or sun or shade “specialist” genotypes within either population. There was little evidence that population differences represented adaptive differentiation for sun or shade; rather, the results suggested the hypothesis of differential selection on patterns of meristem allocation caused by population differences in timing of mortality and intensity of competition.  相似文献   

13.
Adaptive genetic differentiation and adaptive phenotypic plasticity can increase the fitness of plant lineages in heterogeneous environments. We examine the relative importance of genetic differentiation and plasticity in determining the fitness of the annual plant, Erodium cicutarium, in a serpentine grassland in California. Previous work demonstrated that the serpentine sites within this mosaic display stronger dispersal‐scale heterogeneity than nonserpentine sites. We conducted a reciprocal transplant experiment among six sites to characterize selection on plasticity expressed by 180 full‐sibling families in response to natural environmental heterogeneity across these sites. Multivariate axes of environmental variation were constructed using a principal components analysis of soil chemistry data collected at every experimental block. Simple linear regressions were used to characterize the intercept, and slope (linear and curvilinear) of reaction norms for each full‐sibling family in response to each axis of environmental variation. Multiple linear regression analyses revealed significant selection on trait means and slopes of reaction norms. Multivariate analyses of variance demonstrated genetic differentiation between serpentine and nonserpentine lineages in the expression of plasticity in response to three of the five axes of environmental variation considered. In all but one case, serpentine genotypes expressed a stronger adaptive plastic response than nonserpentine genotypes.  相似文献   

14.
The Frozen Niche-Variation hypothesis (FNV) suggests that clones randomly sample and “freeze” the genotypes of their ancestral sexual populations. Hence, each clone expresses only a fraction of the total niche-use variation observed in the sexual population, which may lead to selection for ecological specialization and coexistence of clones. A generalized form of the FNV model suggests that the same is true for life-history (as well as other) traits that have important fitness consequences, but do not relate directly to niche use. We refer to the general form of the model as the Frozen Phenotypic Variation (FPV) model. A mixed population of sexual and parthenogenetic snails (Potamopyrgus antipodarum) in a New Zealand lake allowed us to examine the phenotypic variation expressed by coexisting clones in two benthic habitats, and to compare that variation to the sexual population. Three clones were found primarily in an aquatic macrophyte zone composed of Isoetes kirkii (1.5–3.0 m deep), and three additional clones were found in a deeper macrophyte zone composed of Elodea canadensis (4.0–6.0 m deep). These clones showed significant variation between habitats, which mirrored that observed in the sexual population. Specifically, clones and sexuals from the deeper habitat matured at a larger size and had larger broods. There was also significant among-clone variation within habitats; and as expected under the FPV model, the within-clone coefficients of variation for size at maturity were low in both habitats when compared to the sexual population. In addition, we found four clones that were common in both macrophyte zones. The reaction norms of these clones were flat across habitats, suggesting little phenotypic plasticity for morphology or life-history traits. Flat reaction norms, high among-clone variation, and low coefficients of variation (relative to the sexual population) are in accordance with the FPV model for the origin of clonal lineages. We also measured the prevalence of infection by trematode larvae to determine whether clones are inherently more or less infectable, or whether they are freezing phenotypic variation for resistance from the sexual population. We did this in the deep habitats of the lake where recycling of the parasite by the vertebrate host is unlikely, thereby reducing the complications raised by frequency-dependent responses of parasites to host genotypes. We found no indication that clones are either more or less infectable than the resident sexual population. Taken together, our results suggest that phenotypic variation for both life-history traits and resistance to parasites is frozen by clones from the local sexual population.  相似文献   

15.
I measured the effect of early reproduction on subsequent growth and survival in the alpine perennial wildflower, Polemonium viscosum. Measurements were made over 4 yr on 34 maternal sibships under natural conditions. A significant phenotypic cost of early reproduction characterized the study population. Plants that flowered after only one year's growth had twice as many leaves and 25% more shoots than nonflowering individuals of equal age. However, early flowering decreased leaf number by 18% in the subsequent year and survivorship by 20% after two years relative to changes in leaf number and survival of nonflowering plants. For such trade-offs to shape the further evolution of reproductive schedules, flowering probability and those age-specific components of plant size that represent the energetic currency for reproductive costs must be heritable. Although families showed significant heterogeneity in the probability of early flowering, most (62%) entirely failed to flower. Moreover, phenotypic variation in vegetative size components at ages 1 and 2 had little genetic basis. Only at ages 3 and 4, after vegetative and demographic costs of early reproduction had been incurred, did vegetative size components (leaf length and number, and shoot number) vary significantly among families. Results of this study provide little evidence of a genetically based trade-off between early reproduction and subsequent survival in P. viscosum.  相似文献   

16.
Life-history theory predicts that age and size at maturity of organisms should be influenced by time and food constraints on development. This study investigated phenotypic plasticity in growth, development, body size, and diapause in the yellow dung fly, Scathophaga stercoraria. Full-sib families were allowed to develop under predator-free field conditions. The time before the onset of winter was varied and each brood was split into three environments differing in the amount of dung a set number of larvae had as a resource. When resources were abundant and competition was minimal, individuals of both sexes grew to larger body sizes, took longer time to mature, and were able to increase their growth rates to attain large body sizes despite shorter effective development periods later in the season. In contrast, limited larval resources and strong competition constrained individuals to mature earlier at a smaller adult size, and growth rates could not be increased but were at least maintained. This outcome is predicted by only two life-history optimality models, which treat mortality due to long development periods and mortality due to fast growth as independent. Elevated preadult mortality indicated physiological costs of fast growth independent of predation. When larval resources were limited, mortality increased with heritable variation in development time for males, and toward the end of the season mortality increased as larval resources became more abundant because this induced longer development periods. Sexual and fecundity selection favoring large body size in this species is thus opposed by larval viability selection favoring slower growth in general and shorter development periods when time and resources are limited; this overall combination of selective pressures is presumably shaping the reaction norms obtained here. Flexible growth rates are facilitated by low genetic correlations between development time and body size, a possible consequence of selection for plasticity. Heritable variation was evident in all traits investigated, as well as in phenotypic plasticity of these traits (genotype X interactions). This is possibly maintained by unpredictable spatiotemporal variation in dung abundance, competition, and hence selection.  相似文献   

17.
A genetically variable sensory mechanism provides phenotypic plasticity in the seasonal cycle of the Chrysoperla carnea species-complex of green lacewings. The mechanism functions as a switch during the pupal and early imaginal stages to determine aestival reproduction versus aestival dormancy, and it has two major components: (1) response to photoperiod and (2) response to a stimulus(i) associated with the prey of the larvae. Ultimately, the switch is based on the response to photoperiod—an all-or-nothing trait whose variation (long-day reproduction versus a short-day/long-day requirement for reproduction) is determined by alleles at two unlinked autosomal loci. In eastern North America, variation in this component of the switch differentiates two reproductively isolated “species” that are sympatric throughout the region: Chrysoperla carnea, in which both loci are homozygous for the dominant alleles that determine long-day, spring and summer reproduction and thus multivoltinism, and C. downesi, which has a very high incidence of the recessive alleles for the short-day/long-day requirement, and thus univoltine spring breeding. In contrast, geographical populations in western North America harbor variable amounts of within-and among-family genetic variation for the photoperiodic responses and also for the switch's second component—adult responsiveness to the prey of the larvae. The geographic pattern of genetic variation in the two components of the switch indicates that it is a highly integrated adaptation to environmental heterogeneity. Expression of among-family variation in the prey component of the switch is highly dependent on photoperiodic conditions and genotype (it requires a constant long daylength and the recessive short-day/long-day genotype). Thus, we infer that responsiveness to prey evolved as a modifier of the photoperiodic trait. The switch has a significant negative effect on a major determinant of fitness; it lengthens the preoviposition period in nondiapausing reproductives. This negative effect may result in temporal variation in the direction of selection, which helps maintain genetic variability in the switch mechanisms of western populations. Also, the photoperiodic and prey components of the switch are positively correlated with fecundity in nondiapausing reproductives; however, the strong influence of environmental factors—presence or absence of prey—leaves open the question whether the correlated effects on fecundity are expressed in nature.  相似文献   

18.
To understand the evolutionary significance of geographic variation, one must identify the factors that generate phenotypic differences among populations. I examined the causes of geographic variation in and evolutionary history of number of trunk vertebrae in slender salamanders, Batrachoseps (Caudata: Plethodontidae). Number of trunk vertebrae varies at many taxonomic levels within Batrachoseps. Parallel clines in number occur along an environmental gradient in three lineages in the Coast Ranges of California. These parallel clines may signal either adaptation or a shared phenotypically plastic response to the environmental gradient. By raising eggs from 10 populations representing four species of Batrachoseps, I demonstrated that number of trunk vertebrae can be altered by the developmental temperature; however, the degree of plasticity is insufficient to account for geographic variation. Thus, the geographic variation results largely from genetic variation. Number of trunk vertebrae covaries with body size and shape in diverse vertebrate taxa, including Batrachoseps. I hypothesize that selection for different degrees of elongation, possibly related to fossoriality, has led to the extensive evolution of number of trunk vertebrae in Batrachoseps. Analysis of intrapopulational variation revealed sexual dimorphism in both body shape and number of trunk vertebrae, but no correlation between these variables in either sex. Females are more elongate than males, a pattern that has been attributed to fecundity selection in other taxa. Patterns of covariation among different classes of vertebrae suggest that some intrapopulational variation in number results from changes in vertebral identity rather than changes in segmentation.  相似文献   

19.
20.
植物,尤其是克隆植物,能够通过表型变化来缓解外界压力,提高对环境的适应能力。该文研究了水生克隆植物乌菱(Trapa bicornis)对底泥磷含量(Sediment phosphorus concentration, SP)、植株密度(Plant density, PD) 及两者间交互作用的可塑性响应,探讨可塑性是否能促进其在富营养化环境中的生长。结果显示,底泥磷含量对乌菱的主菱盘叶数、同化根比根长、吸收根比根长以及叶、茎、同化根、吸收根与植株总磷含量等都有显著影响 (p<0.05),而植株密度对乌菱各生长及生理生态参数均无显著作用 (p>0.05);SP与PD的交互作用弱化了底泥磷含量对乌菱的效应。底泥磷含量和植株密度甚至改变了同化根、吸收根、茎、叶与总生物量之间的异速生长关系。研究结果表明:乌菱的表型可塑性变化主要受底泥磷含量的影响,乌菱通过器官生物量分配、形态结构及生理生态特征的调整来响应底泥磷含量的变化;同时,高的植株密度也可以提高其在富营养化生境下的生态适应性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号