首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Scanning electron microscopy, immunocytochemistry, and single cell microspectrophotometry were employed to characterize the photoreceptors and visual pigments in the retina of the garter snake, Thamnophis sirtalis. The photoreceptor population was found to be comprised entirely of cones, of which four distinct types were identified. About 45.5% of the photoreceptors are double cones consisting of a large principal member joined near the outer segment with a much smaller accessory member. About 40% of the photoreceptors are large single cones, and about 14.5% are small single cones forming two subtypes. The outer segments of the large single cones and both the principal and accessory members of the doubles contain the same visual pigment, one with peak absorbance near 554 nm. The small single cones contain either a visual pigment with peak absorbance near 482 nm or one with peak absorbance near 360 nm. Two classes of small single cones could be distinguished also by immunocytochemistry and scanning electron microscopy. The small single cones with the 360-nm pigment provide the garter snake with selective sensitivity to light in the near ultraviolet region of the spectrum. This ultraviolet sensitivity might be important in localization of pheromone trails. Accepted: 10 March 1997  相似文献   

2.
Green sturgeon and pallid sturgeon photoreceptors were studied with scanning electron microscopy (SEM), microspectrophotometry and, in the case of the green sturgeon, retinal whole-mounts. The retinas of both species contain both rods and cones: cones comprise between 23% (whole-mount) and 36% (SEM) of the photoreceptors. The cone population of both species is dominated by large single cones, but a rare small single cone is also present. In both species, most rods have long outer segments of large diameter. A rod with a relatively thin outer segment is present in the pallid sturgeon retina. Mean cone packing density for the entire green sturgeon retina is 4,690±891 cones/mm2, with the dorsal retina 14% more dense than the ventral. There is evidence for a horizontal visual streak just above and including the optic disc. Mean rod packing density is 16,006±1,668 rods/mm2 for the entire retina, and fairly uniform throughout. Both species have rods with peak absorbance near 540 nm, as well as short-wavelength-sensitive cones (green: 464.5±0.7 nm; pallid: 439.7±3.5 nm); middle-wavelength-sensitive cones (green: 538.0±1.4 nm; pallid: 537.0±1.7 nm); and long-wavelength-sensitive cones (green: 613.9±3.0 nm; pallid: 617.8±7.6 nm).  相似文献   

3.
The chick retina has four morphological cone types that differ not only in shape, but also in the visual pigment in the outer segment, in the colour of the oil droplet in the inner segment and in synaptic connectivity. Neither the type of droplet nor the visual pigment has been definitively established for the four cone types. The main aim of the present work has been the isolation of entire live photoreceptors in order to study the oil droplet colour in each cone type and to quantify each type. We have improved an earlier retinal cell isolation method and obtained large numbers of entire cones. Principal cones (27% of the cones) possess a yellow or colourless droplet. Accessory cones (27% of the cones) all contain a small pale green droplet. Straight cones (44% of the cones) have a red, orange, yellow, or colourless droplet. Oblique cones (1.66% of the cones) all have a colourless droplet. We have found that straight cones with a red, orange, or yellow droplet differ in terms of the position of the nucleus and their percentage and conclude that they are distributed in three rows in the outer nuclear layer (ONL) of the central retina. Our study of 4,6-diamidino-2-phenylindole-stained retinal sections has revealed three rows of nuclei instead of the two currently thought to form the ONL. Together, our results show a larger cone diversity than previously known, suggest a larger functional diversity and provide an efficient method for isolating entire chick photoreceptors. This work was supported by grants from the Dirección General de Investigación, Ministerio de Educación y Ciencia of Spain (no. BFU2005-08786-C02-01) and from the Comunidad de Madrid, Spain (no. 920648/2006).  相似文献   

4.
The morphology of the retinal pigment epithelium and photoreceptor cells has been studied in the common newt Triturus viridescens dorsalis by light, conventional transmission and scanning electron microscopy. The pigment epithelium is formed by a single layer of low rectangular cells, separated by a multilayered membrane (Bruch's membrane) from the vessels of the choriocapillaris. The scleral border of the pigment epithelium is highly infolded and each epithelial cell contains smooth endoplasmic reticulum, myeloid bodies, mitochondria, lysosomes, phagosomes and an oval nucleus. Inner, pigment laden, epithelial processes surround the photoreceptor outer and inner segments. The three retinal photoreceptor types, rods, single cones and double cones, differ in both external and internal appearance. The newt, rod, outer segments appear denser than the cones in both light and electron micrographs, due to a greater number of rod lamellae per unit distance of outer segment and to the presence of electron dense intralamellar bands. The rod outer segments possess deep incisures in the lamellae while the cone lamellae lack incisures. Both rod and cone outer segments are supported by a peripheral array of dendritic processes containing longitudinal filaments which originate in the inner segment. The inner segment mitochondria, forming the rod ellipsoid, arelong and narrow while those in the cone are spherical to oval in shape. The inner segments of all three receptor cell types also contain a glycogen-filled paraboloid and a myoid region, just outside the nucleus, rich in both rough and smooth endoplasmic reticulum. The elongate, cylindrical nuclei differ in density. The rod nuclei are denser than those of the cones, contain clumped chromatin and usually extend further vitreally. Similarly, the cytoplasm of the rod synaptic terminal is denser than its cone counterpart and contains synaptic vesicles almost twice as large as those of the cones. Photoreceptor synapses in rods and cones are established by both superficial and invaginated contacts with bipolar or horizontal cells.  相似文献   

5.
Peter hman 《Acta zoologica》1971,52(2):287-297
The outer segment of long and short photoreceptors in the retina of the river lamprey, Lampetra fluviatilis, were studied by light- and fluorescence microscopy together with some different electron microscopic methods. The outer segments show characteristics of both rods and cones and are suggested to represent intermediate kinds of photoreceptors.  相似文献   

6.
Summary The ultrastructure of the accessory outer segment (AOS) — a ciliumlike structure emanating from the inner segment and running alongside the outer segment of photoreceptors — is described. The AOS occurs in both rods and cones of Poecilia reticulata. Its ultrastructure, including the arrangement of microtubules, which originate from the ciliary stalk, is the same in rods and cones. The cone-AOS is connected with the outer segment by a thin plasmabridge, whereas the rod-AOS lies embedded within the outer segment. The outer segment of the cone, in contrast to that of the rod, is separated from the pigment epithelium by a large extracellular space. An intimate contact, however, is secured by the AOS; its membrane is closely appositioned to the pigment epithelium membrane. The functional significance of the AOS and its possible occurrence in other vertebrate classes, are discussed.  相似文献   

7.
The fine structure of the retinal photoreceptors has been studied by light and electron microscopy in the southern fiddler ray or guitarfish (Trygonorhina fasciata). The duplex retina of this species contains only rods and single cones in a ratio of about 40:1. No multiple receptors (double cones), no repeating pattern or mosaic of photoreceptors and no retinomotor movements of these photoreceptors were noted. The rods are cylindrical cells with inner and outer segments of the same diameter. Cones are shorter, stouter cells with a conical outer segment and a wider inner segment. Rod outer segment discs display several irregular incisures to give a scalloped outline to the discs while cone outer segment discs have only a single incisure. In all photoreceptors a non-motile cilium joins the inner and outer segments. The inner segment is the synthetic centre of photoreceptors and in this compartment is located an accumulation of mitochondria (the ellipsoid), profiles of both rough and smooth endoplasmic reticulum, prominent Golgi zones and frequent autophagic vacuoles. The nuclei of rods and cones have much the same chromatin pattern but cone nuclei are invariably located against or particularly through the external limiting membrane (ELM). Numerous Landolt's clubs which are ciliated dendrites of bipolar cells as well as Müller cell processes project through the ELM, which is composed of a series of zonulae adherentes between these cells and the photoreceptors. The synaptic region of both rods (spherules) and cones (pedicles) display both invaginated (ribbon) synapses and superficial (conventional) synapses with cones showing more sites than the rods.  相似文献   

8.
Summary Localization of iodopsin in the retina of the chicken and Japanese quail was investigated immunohistochemically with the use of monoclonal antibodies (R1-R4) highly specific for R-photopsin (protein moiety of iodopsin). In paraffin sections of the retina, the outer segments of double cones (principal and accessory cones) and of one particular type of single cones were labeled with the antibodies. In addition, reticular cytoplasmic structures, probably representing the Golgi apparatus in a position close to the vitreous pole of the paraboloid and to the outer limiting membrane were intensely stained in the cone cells bearing an immunoreactive outer segment. In whole-mount preparations, 5 types of cone cells were identified according to the color of oil droplets, i.e., red, yellow, pale-green (principal member of double cones), pale-blue and clear, in addition to a sixth type devoid of an oil droplet (accessory member of double cones). The immunohistochemical analysis of the preparations revealed that R-photopsin (suggesting the presence of iodopsin) is localized in the outer segments of both the principal and accessory members of double cones, and the population of single cones displaying a red oil droplet. Other cones endowed with a yellow, blue or clear oil droplet were not labeled with the antibodies used. Similar results were obtained in the retina of the Japanese quail.  相似文献   

9.
The eye of Rhinomugil corsula has a duplex retina differentiated into dorsal and ventral halves, with the ventral retina 116·4 μm thicker than the dorsal retina. The rods of the ventral retina are relatively longer, with longer outer segments. The nuclei of the outer nuclear layer of the dorsal and ventral halves are in four and six to seven rows respectively. The rod outer segment bears a single incision. The mitochondria of cone and rod inner segments has a vitreal-scleral gradient. Single and double cones are present in both halves, with triple cones in the dorsal half only. The outer segments of double cones are equal and united. The single cones have two connecting cilia. The cone cells are arranged in a square mosaic with four double cones and five single cones to each unit in the dorsal half, and in a rhombic pattern in the ventral half.  相似文献   

10.
The photoreceptors of Boa constrictor, a boid snake of the subfamily Boinae, were examined with scanning electron microscopy and microspectrophotometry. The retina of B. constrictor is duplex but highly dominated by rods, cones comprising 11% of the photoreceptor population. The rather tightly packed rods have relatively long outer segments with proximal ends that are somewhat tapered. There are two morphologically distinct, single cones. The most common cone by far has a large inner segment and a relatively stout outer segment. The second cone, seen only infrequently, has a substantially smaller inner segment and a finer outer segment. The visual pigments of B. constrictor are virtually identical to those of the pythonine boid, Python regius. Three different visual pigments are present, all based on vitamin A(1.) The visual pigment of the rods has a wavelength of peak absorbance (lambda(max)) at 495 +/- 2 nm. The visual pigment of the more common, large cone has a lambda(max) at 549 +/- 1 nm. The small, rare cone contains a visual pigment with lambda(max) at 357 +/- 2 nm, providing the snake with sensitivity in the ultraviolet. We suggest that B. constrictor might employ UV sensitivity to locate conspecifics and/or to improve hunting efficiency. The data indicate that wavelength discrimination above 430 nm would not be possible without some input from the rods.  相似文献   

11.
Summary Electron microscopical observations show that the cones in the retina of the diurnal Poecilia reticulata shed their membranous outer segment disks. This occurs at the side of the disk which is open to the extracellular space. Shedding is observed in single and twin cones and occurs at any level of the outer segment. The disks are not discarded in packages or as single disks, but are shed in small vesicular portions. This mode of disk shedding may explain why in cone outer segments radioactively labelled replacement protein is diffusely distributed.The authors wish to thank Dr. C. Wise of this Department for helpful discussions  相似文献   

12.
Ole Munk 《Acta zoologica》1989,70(3):143-149
The eye of the deep-sea teleost Lestidiops affinis has been examined primarily by light microscopy and found to possess a duplex retina consisting of two main divisions, a pure-cone and a pure-rod region, with a narrow zone of transition, possessing both cones and rods, joining the two. The pure-cone region is located in the temporal (caudal) part of the retina subserving binocular vision in the rostral direction. It has an area temporalis retinae with particularly long and densely packed single cones arranged in a regular hexagonal mosaic. Joined (double or twin) cones have not been recognized with certainty in the pure-cone region. The pure-rod region, comprising the larger part of the retina, contains rods grouped in bundles separated by retinal pigment epithelium (RPE) processes with pigmented cores. The synaptic endings of the rods are arranged in separate clusters in the outer plexiform layer, there being apparently a separate rod pedicle cluster beneath (vitread to) each rod bundle. Structural comparisons with certain other deep-sea teleosts suggest the likely presence of a retinal tapetum in L. affinis, i.e. each single cone or rod bundle is situated in a reflecting pit formed by the RPE, with a discrete reflector apposed to the tip of each cone outer segment and the tips of the outer segments of each square-cut rod bundle.  相似文献   

13.
Hess M  Melzer RR  Eser R  Smola U 《Journal of morphology》2006,267(11):1356-1380
The outer retinal architecture of Engraulididae is uncommon among vertebrates. In some anchovies, e.g., Anchoa, two cone types are arranged alternating in long photoreceptor chains, i.e., polycones. The cones have radially oriented outer segment lamellae in close contact with a complex guanine tapetum, most probably subserving polarization contrast vision. To clarify the distribution of the aberrant polycone architecture within the Engraulididae and to provide indications about polycone evolution, the outer retina morphology of 16 clupeoid species was investigated by light and electron microscopy, predominantly using museum-stored material. The outgroup representatives of four clupeid subfamilies (Clupeonella cultriventris, Dorosoma cepedianum, Ethmalosa fimbriata, Pellonula leonensis) show a row pattern of double cones, partially with single cones at defined positions and a pigment epithelium with lobopodial protrusions containing melanin. The pristigasterid Ilisha africana has double rows of single cones lying between linear curtains of pigment epithelium processes filled with minute crystallites and melanin concentrated near their vitreal tips. Within the Engraulididae, two main architectures are found: Coilia nasus and Thryssa setirostris have linear multiple cones or polycones separated by long pigment epithelium barriers containing tapetal crystallites and melanin in the tips (also found in Setipinna taty), whereas Anchoviella alleni, Encrasicholina heteroloba, Engraulis encrasicolus, Engraulis mordax, Lycengraulis batesii, and Stolephorus indicus exhibit the typical polycone architecture. Cetengraulis mysticetus and Lycothrissa crocodilus show cone patterns and pigment epithelium morphology differing from the other anchovy species. The sets of characters are compared, corroborated with the previous knowledge on clupeoid retinae and discussed in terms of functional morphology and visual ecology. A scenario on polycone evolution is developed that may serve as an aid for the reconstruction of engraulidid phylogeny. Furthermore, this study demonstrates the suitability of museum material for morphological studies, even at the electron microscopic level.  相似文献   

14.
This study examines some peculiarities of the eye organization and spectral properties of retinal photoreceptors of the Pacific saury Cololabis saira. The saury has relatively large eyes with a developed accomodation apparatus and an area of enhanced visual acuity (the fovea) in the retina. A specialized pigmented septum is observed in the vitreal cavity, which is supposed to function as a light-shading screen. The retina contains numerous rods and single and double cones arranged in a square mosaic pattern. Microspectrophotometric measurements indicated that their max occurs at 502 (rods), 380 (single cones), and 478/565 (double cones) nm. Such properties can provide color vision in a broad spectral range, including UV light. The peripheral visual apparatus of the Pacific saury is typical of active diurnal predatory fish that inhabit shallow and upper pelagic water layers.  相似文献   

15.
The renewal of protein in retinal rods and cones   总被引:32,自引:24,他引:8       下载免费PDF全文
The renewal of protein in retinal rods and cones has been analyzed by quantitative electron microscope radioautography in adult frogs injected with a mixture of radioactive amino acids. Protein synthesis occurs predominantly in the ergastoplasm, localized in the myoid region of the photoreceptor cells. Much of the newly formed protein next flows through the Golgi complex. In rods, a large proportion of the protein then moves past the mitochondria of the ellipsoid segment, passes through the connecting cilium into the outer segment, and is there assembled into membranous discs at the base of that structure. Discs are formed at the rate of 36 per day in red rods and 25 per day in green rods at 22.5° C ambient temperature. In cones, a small proportion of the protein is similarly displaced to the outer segment. However, no new discs are formed. Instead, the protein becomes diffusely distributed throughout the cone outer segment. Low levels of radioactivity have been detected, shortly after injection, in the mitochondria, nucleus, and synaptic bodies of rods and cones. Nevertheless, in these organelles, the renewal process also appears to involve the utilization of protein formed in the ergastoplasm of the myoid.  相似文献   

16.
17.
Watasenia scintillans, a bioluminescent deep-sea squid, has a specially developed eye with a large open pupil and three visual pigments. Photoreceptor cells (outer segment: 476 micron; inner segment: 99 micron) were long in the small area of the ventral retina receiving downwelling light, whereas they were short (outer segment: 207 micron; inner segment: 44 micron) in the other regions of the retina. The short photoreceptor cells contained the visual pigment with retinal (lambda max approximately 484 nm), probably for the purpose of adapting to their environmental light. The outer segment of the long photoreceptor cells consisted of two strata, a pinkish proximal area and a yellow distal area. The visual pigment with 3-dehydroretinal (lambda max approximately 500 nm) was located in the pinkish proximal area, giving high sensitivity at longer wavelengths. A newly found pigment (lambda max approximately 471 nm) was in the yellow distal area. The small area of the ventral retina containing two visual pigments is thought to have a high and broad spectral sensitivity, which is useful for distinguishing the bioluminescence of squids of the same species in their environmental downwelling light. These findings were obtained by partial bleaching of the extracted pigment from various areas of the retina and by high-performance liquid chromatographic analysis of the chromophore, complemented by microscopic observations.  相似文献   

18.
The formation of visual cells and their intracellular organelles was studied in the embryonic chicken (Gallus domesticus) between stage 36 and hatching. Cilia formation was observed at stage 30 and by stage 42, outer segment formation from the cilia was evident. The inner segments appeared as buddings at stage 36. By stage 37, the buddings of double cones were observed clearly and such buddings elongated by stage 42. Both the single cones and rods appeared as buddings by stage 38 and elongation of the buddings was seen by stage 42. Oil droplets initially appeared by stage 39 in accessory cones and were observed in other cones by stage 42. Glycogen bodies were demonstrated firstly in rods and accessory cones at stage 43 and their development was completed by stage 45. In essence, all the essential elements of the visual cells were fully developed by hatching.  相似文献   

19.
Ole Munk 《Acta zoologica》1990,71(2):89-95
Ontogenetic changes in the visual cell layer of the duplex retina during growth of the eye of the deep-sea teleost Gempylus serpens, the snake mackerel, are illustrated by comparing the retina of a small specimen with that of a previously studied adult fish. The small specimen has tightly packed cones spanning the whole width of the visual cell layer and small rods situated in its vitread part. Over most of the retina the cone population consists of single cones arranged in a very regular hexagonal mosaic. The temporalmost retina has a cone population consisting mainly of twin cones arranged in meridional rows. Growth of the eye is associated with an increase in the thickness of the visual cell layer and the density of rods and a total elimination of the densely packed single cones, the retina of the adult fish possessing only a temporally located population of double cones. The radical differences between the retina of the small and adult snake mackerel are probably associated with the different light regimes encountered by small and large specimens.  相似文献   

20.
The outer retina of the smelt Osmerus eperlanus, a visually orientated plankton feeder, of Lake Hiidenvesi (Finland), was examined using both light and transmission electron microscopy. Apart from rods, six morphologically different cone photoreceptor types were identified: short single cones, long single cones, unequal/equal double cones and triple cones (triangular and linear variety). Additionally, in the dorsal region, multiple cone arrangements consisting of up to five members occur. Long single cones and triple cones were observed only sporadically throughout the retina. The incidence of short single cones as a regular element of the cone mosaic is restricted to the ventrotemporal area. The dominant pattern in the Osmerus retina is a pure or a twisted row pattern occurring in all regions. Ventrotemporally, however, square patterns were found as well. The highest cone densities occur in the peripheral ventrotemporal retina. These results indicate that the ventrotemporal region plays an important role in the vision of the smelt. The findings are discussed with respect to the photic habitat conditions and behavioural ecology of the smelt in Lake Hiidenvesi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号