首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Australian ghost bat is a large, opportunistic carnivorous species that has undergone a marked range contraction toward more mesic, tropical sites over the past century. Comparison of mitochondrial DNA (mtDNA) control region sequences and six nuclear microsatellite loci in 217 ghost bats from nine populations across subtropical and tropical Australia revealed strong population subdivision (mtDNA φST = 0.80; microsatellites URST = 0.337). Low-latitude (tropical) populations had higher heterozygosity and less marked phylogeographic structure and lower subdivision among sites within regions (within Northern Territory [NT] and within North Queensland [NQ]) than did populations at higher latitudes (subtropical sites; central Queensland [CQ]), although sampling of geographically proximal breeding sites is unavoidably restricted for the latter. Gene flow among populations within each of the northern regions appears to be male biased in that the difference in population subdivision for mtDNA and microsatellites (NT φST = 0.39, URST = 0.02; NQ φST = 0.60, URST = ?0.03) is greater than expected from differences in the effective population size of haploid versus diploid loci. The high level of population subdivision across the range of the ghost bat contrasts with evidence for high gene flow in other chiropteran species and may be due to narrow physiological tolerances and consequent limited availability of roosts for ghost bats, particularly across the subtropical and relatively arid regions. This observation is consistent with the hypothesis that the contraction of the species' range is associated with late Holocene climate change. The extreme isolation among higher-latitude populations may predispose them to additional local extinctions if the processes responsible for the range contraction continue to operate.  相似文献   

2.
Geographic variation in mitochondrial DNA (mtDNA) restriction sites was studied in the fox sparrow (Passerella iliaca). Seventy-eight haplotypes were found. Haplotypes fall into four phylogeographic groups that correspond to groups defined by plumage characters. The geographic distribution of these four groups does not appear congruent with mtDNA patterns in other vertebrates. Within each group, there is little geographic variation in mtDNA restriction sites, although there is geographic variation in plumage coloration and body size. The evolution of mtDNA diversity in fox sparrows seems best explained by vicariant events rather than isolation by distance. The mtDNA evidence suggests that Passerella megarhyncha and Passerella schistacea, two nonsister taxa that occur in western North America, have independently undergone bottlenecks. Hybridization is limited between all pairs of taxa except P. megarhyncha and P. schistacea, where mtDNA evidence suggests a narrow contact zone along the interface of the Great Basin and Sierra Nevada/Cascades. Morphometric characters intergrade over a broader area, suggesting that different processes are responsible for the two gradients. The occurrence of limited backcrossing among taxa suggests that cytoplasmic-nuclear incompatibility is lacking. The number of biological species would range from one to four, depending on the degree of hybridization tolerated. The mtDNA and plumage characters suggest four phylogenetic species: P. iliaca, P. megarhyncha, P. unalaschcensis, and P. schistacea.  相似文献   

3.
The geographical patterns of variation shown at 20 allozyme and non-enzymatic protein-coding loci, in 8 external, and in 12 skeletal morphological characters in the rufous-collared sparrow, Zonotrichia capensis, were analyzed in order to test the local (genetic) adaptation hypothesis regarding the origin and maintenance of vocal dialects in birds. Approximately 20 males were collected from each of four sites within each of six different dialect zones. There was significant variability in both external and skeletal morphology among all 24 sites and among dialect groups. Average Wright's corrected fixation coefficient (FST) was 0.118, indicating significant genetic differentiation among all sites, regardless of dialect. Hierarchical F statistics indicated that only 50% of among site variability was due to a dialect effect. Puna dialect sites were highly differentiated from all other sites with respect to both morphology (external and skeletal measures) and allozyme frequencies. Heterogeneity at the PGM-1 locus among puna scrub sites was the major cause of the high average FST across all sites, and within the puna scrub dialect. Average genetic differentiation among non-puna sites (FST = 0.018) was similar to differentiation among sites within each of the five non-puna dialect groups (mean FST = 0.0132 ± 0.0069). Hierarchical F statistics indicated that none of the among-site differentiation in this subset of samples was due to a dialect effect. These observations are not consistent with the local adaptation hypothesis. All significant genetic heterogeneity occurred among sites in mountainous habitats, and we suggest that topography and patchiness of habitat may have been major factors involved in population differentiation, rather than vocal dialects.  相似文献   

4.
Comparisons of cytoplasmic and nuclear diversity within and among natural plant populations have the potential to distinguish the relative influences of seed and pollen dispersal on contemporary gene flow, or alternatively, may permit inferences of the colonization history of a species via seed. We examined patterns of cpDNA and allozyme variation in Senecio gallicus, a diploid, annual plant that occurs in both coastal and ruderal inland areas of the Iberian Peninsula and southern France. The species appears to have a strong propensity for long-distance seed dispersal. Five cpDNA haplotypes were found by RFLP analysis among a sample of 111 individuals derived from 11 populations. Differences in haplotype frequencies across populations were most evident with respect to a dramatic increase in the frequency of a derived haplotype from coastal to inland localities. The level of cpDNA differentiation among populations within the inland group (θ0 = 0.07) was significantly less than that seen within the coastal group (θ0 = 0.41). In contrast, for allozymes, no significant difference in population structure was evident between collections from coastal and inland habitats. At the rangewide geographic scale, there was only a very weak association between inferred levels of gene flow and geographic distance for cpDNA, and no such association was found for allozymes. It appears that while seed movement in the species might be sufficiently great to disturb the pattern of isolation by distance for cpDNA, it cannot fully account for the nearly randomized spatial structure at polymorphic allozyme loci. It is suggested that isolation of populations in Atlantic-Mediterranean coastal refugia during previous glacial maxima, and the effects of subsequent colonization events in inland areas, have had an important effect on molding the present genetic structure of the species.  相似文献   

5.
Abstract In reciprocal transplant experiments, Bertness and Gaines (1993) found that Semibalanus balanoides juveniles that had settled in an upper Narragansett Bay estuary survived better in that estuary that did juveniles from coastal localities. The observed pattern of survivorship led to the claim that local adaptation may result from a combination of limited gene flow between and strong selection within these habitats. Here we test the hypothesis that limited gene flow has led to habitat‐specific population differentiation using sequence and restriction fragment length polymorphism analyses of the mitochondrial DNA D‐loop region of S. balanoides. Samples were analyzed from replicated coastal and estuary localities in both Narragansett Bay, Rhode Island, and Damariscotta River, Maine. The patterns of FST indicate that gene flow between coast and estuary is extensive (Nm > 100) and is not lower in the estuary with lower flushing rates (Narragansett Bay). Given the high estimate of genetic exchange, adaptations for unpredictable environments seem more likely than local adaptation in this species because loci that respond to selection in one generation are essentially homogenized by the next seasons' settlement. Nevertheless, these estimates of neutral gene flow can help identify the strength of selection necessary for local adaptation to accumulate in Semibalanus.  相似文献   

6.
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ~80 years from known diploid progenitors in western North America. Here, we apply progenitor‐specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine‐scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co‐occur, suggesting potential reproductive barriers among separate lineages in both polyploid species.  相似文献   

7.
8.
Abstract Genetic markers that differ in mode of inheritance and rate of evolution (a sex‐linked Z‐specific micro‐satellite locus, five biparentally inherited microsatellite loci, and maternally inherited mitochondrial [mtDNA] sequences) were used to evaluate the degree of spatial genetic structuring at macro‐ and microgeographic scales, among breeding regions and local nesting populations within each region, respectively, for a migratory sea duck species, the spectacled eider (Somateria fisheri). Disjunct and declining breeding populations coupled with sex‐specific differences in seasonal migratory patterns and life history provide a series of hypotheses regarding rates and directionality of gene flow among breeding populations from the Indigirka River Delta, Russia, and the North Slope and Yukon‐Kuskokwim Delta, Alaska. The degree of differentiation in mtDNA haplotype frequency among breeding regions and populations within regions was high (φCT= 0.189, P < 0.01; φSC= 0.059, P < 0.01, respectively). Eleven of 17 mtDNA haplotypes were restricted to a single breeding region. Genetic differences among regions were considerably lower for nuclear DNA loci (sex‐linked: φST= 0.001, P > 0.05; biparentally inherited microsatellites: mean θ= 0.001, P > 0.05) than was observed for mtDNA. Using models explicitly designed for uniparental and biparentally inherited genes, estimates of spatial divergence based on nuclear and mtDNA data together with elements of the species' breeding ecology were used to estimate effective population size and degree of male and female gene flow. Differences in the magnitude and spatial patterns of gene correlations for maternally inherited and nuclear genes revealed that females exhibit greater natal philopatry than do males. Estimates of generational female and male rates of gene flow among breeding regions differed markedly (3.67 × 10‐4 and 1.28 × 10‐2, respectively). Effective population size for mtDNA was estimated to be at least three times lower than that for biparental genes (30,671 and 101,528, respectively). Large disparities in population sizes among breeding areas greatly reduces the proportion of total genetic variance captured by dispersal, which may accelerate rates of inbreeding (i.e., promote higher coancestries) within populations due to nonrandom pairing of males with females from the same breeding population.  相似文献   

9.
Parallel evolution of similar phenotypes provides strong evidence for the operation of natural selection. Where these phenotypes contribute to reproductive isolation, they further support a role for divergent, habitat‐associated selection in speciation. However, the observation of pairs of divergent ecotypes currently occupying contrasting habitats in distinct geographical regions is not sufficient to infer parallel origins. Here we show striking parallel phenotypic divergence between populations of the rocky‐shore gastropod, Littorina saxatilis, occupying contrasting habitats exposed to either wave action or crab predation. This divergence is associated with barriers to gene exchange but, nevertheless, genetic variation is more strongly structured by geography than by ecotype. Using approximate Bayesian analysis of sequence data and amplified fragment length polymorphism markers, we show that the ecotypes are likely to have arisen in the face of continuous gene flow and that the demographic separation of ecotypes has occurred in parallel at both regional and local scales. Parameter estimates suggest a long delay between colonization of a locality and ecotype formation, perhaps because the postglacial spread of crab populations was slower than the spread of snails. Adaptive differentiation may not be fully genetically independent despite being demographically parallel. These results provide new insight into a major model of ecologically driven speciation.  相似文献   

10.
Many classic examples of adaptive radiations take place within fragmented systems such as islands or mountains, but the roles of mosaic landscapes and variable gene flow in facilitating species diversification is poorly understood. Here we combine phylogenetic and landscape genetic approaches to understand diversification in Darwin's finches, a model adaptive radiation. We combined sequence data from 14 nuclear introns, mitochondrial markers, and microsatellite variation from 51 populations of all 15 recognized species. Phylogenetic species‐trees recovered seven major finch clades: ground, tree, vegetarian, Cocos Island, grey and green warbler finches, and a distinct clade of sharp‐beaked ground finches (Geospiza cf. difficilis) basal to all ground and tree finches. The ground and tree finch clades lack species‐level phylogenetic structure. Interisland gene flow and interspecies introgression vary geographically in predictable ways. First, several species exhibit concordant patterns of population divergence across the channel separating the Galápagos platform islands from the separate volcanic province of northern islands. Second, peripheral islands have more admixed populations while central islands maintain more distinct species boundaries. This landscape perspective highlights a likely role for isolation of peripheral populations in initial divergence, and demonstrates that peripheral populations may maintain genetic diversity through outbreeding during the initial stages of speciation.  相似文献   

11.
Inbreeding depression is thought to be a major factor affecting the evolution of mating systems and dispersal. While there is ample evidence for inbreeding depression in captivity, it has rarely been documented in natural populations. In this study, I examine data from a long-term demographic study of an insular population of song sparrows (Melospiza melodia) and present evidence for inbreeding depression. Forty-four percent of all matings on Mandarte Island, British Columbia, were among known relatives. Offspring of a full-sib mating (f = 0.25) experienced a reduction in annual survival rate of 17.5% on average. Over their lifetime, females with f = 0.25 produced 48% fewer young that reached independence from parental care. In contrast, male lifetime reproductive success was not affected by inbreeding. Reduced female lifetime reproductive success was mostly due to reduced hatching rates of the eggs of inbred females. Relatedness among the parents did not affect their reproductive success. Using data on survival from egg stage to breeding age, I estimated the average song sparrow egg on Mandarte Island to carry a minimum of 5.38 lethal equivalents (the number of deleterious genes whose cumulative effect is equivalent to one lethal); 2.88 of these lethal equivalents were expressed from egg stage to independence of parental care. This estimate is higher than most estimates reported for laboratory populations and lower than those reported for zoo populations. Hence, the costs of inbreeding in this population were substantial and slightly above those expected from laboratory studies. Variability in estimates of lethal equivalents among years showed that costs of inbreeding were not constant across years.  相似文献   

12.
The variance in fitness across population members can influence major evolutionary processes. In socially monogamous but genetically polygynandrous species, extra‐pair paternity (EPP) is widely hypothesized to increase the variance in male fitness compared to that arising given the socially monogamous mating system. This hypothesis has not been definitively tested because comprehensive data describing males’ apparent (social) and realized (genetic) fitness have been lacking. We used 16 years of comprehensive social and genetic paternity data for an entire free‐living song sparrow (Melospiza melodia) population to quantify and compare variances in male apparent and realized fitness, and to quantify the contribution of the variances in within‐pair reproductive success (WPRS) and extra‐pair reproductive success (EPRS) and their covariance to the variance in realized fitness. Overall, EPP increased the variance in male fitness by only 0–27% across different fitness and variance measures. This relatively small effect reflected the presence of socially unpaired males with zero apparent and low realized fitness, small covariance between WPRS and EPRS, and large variance in WPRS that was relatively unaffected by EPP. Therefore, although EPP altered individual males’ contributions to future generations, its impact on population‐level parameters such as the opportunity for selection and effective population size was limited.  相似文献   

13.
Samples of skin tissue were collected by biopsy darting from humpback whales ( Megaptera novaeangliae ) in six seasonal habitats representing three stocks and four regions: Groups IV (western Australia), V western component (eastern Australia), V eastern component (New Zealand and Tonga) and VI (the Antarctic Peninsula and Gorgona Island, Colombia, South America) of the Southern Hemisphere. A variable section of the mitochondrial DNA control region was amplified and sequenced from 84 of these individuals, distinguishing a total of 48 unique sequences ( i. e. , mtDNA nucleotypes). Phylogenetic reconstructions suggested that these nucleotypes form three clades, corresponding to those previously described in a world-wide survey of humpback whale mtDNA variation, although bootstrap support for two of the clades was relatively low (<50%). An analysis of variance adapted for molecular information showed significant differentiation of nucleotypes among the three Groups (Stocks) and heterogeneity of haplotype diversity among the four regions. A pattern of interchange within and between oceanic basins was demonstrated by the presence of shared identical nucleotypes among humpback whales in regions of the Southern and Northern Hemispheres.  相似文献   

14.
Two subspecies of killifish, Fundulus heteroclitus, inhabit the Atlantic coast of the United States. The contact zones between them are typified by morphological, physiological, nuclear gene, and mitochondrial DNA clines. Considerable debate exists about the importance of restricted gene flow and natural selection in maintaining these clines. To evaluate the relative importance of these two evolutionary forces we employed analysis of mtDNA as an independent measure of gene flow. Solutions of equilibrium diffusion equations suggested that killifish dispersal must be less than 2 km to maintain previously observed allozyme frequency clines in the absence of strong selection. To determine whether populations separated by distances greater than 2 km accumulate significant genetic differences we examined a total of N = 480 individuals from five killifish populations spanning a continuous shoreline distance of 8.4 km. Distribution of the 25 detected haplotypes indicated that most of the variation was within rather than between sampling locations. No evidence of geographic structure was detected, nor were there any significant genetic differences between killifish populations. With these data, gene flow was evaluated by estimating effective migration rate (Nem) between the populations. Nem was estimated from Gst(Nem = 49.4), from Fst (Nem = 24.1), by the private alleles approach (Nem = 18.5) and via four phylogenetic analyses (Nem ranged from 11.4 to 16.9). Regardless of the analysis, Nem was greater than one; the threshold level at which gene flow is strong enough to prevent differentiation due to genetic drift. This suggests that while the characteristics that distinguish Fundulus subspecies may have arisen in isolation, the current clinal distributions exhibited along the Atlantic coast are most likely maintained by selection.  相似文献   

15.
Life history should relate to gene flow (Nm) through its influence on dispersal and effective population size. Comparative studies designed to elucidate this relationship must contend with historical events that can yield misleading estimates of gene flow and statistical problems associated with inclusion of life-history traits correlated with phylogeny. We studied the relationships of life-history characters and gene flow in 15 species of darters, a monophyletic group of stream fishes. Populations of coexisting species were sampled in three geographic regions with different Pleistocene glaciation histories. Gene flow was estimated indirectly from allozymes using two methods, 8 and private alleles. Isolation-by-distance was also tested using regression of pairwise estimates of gene flow (M?) on distance. Theta and private-alleles methods produced congruent estimates of Nm, except in a study region hypothesized to have been historically fragmented and then united following Pleistocene glaciation. A relatively weak association between life-history traits and Nm (based on θ) was observed when species from the historically fragmented region were included in stepwise regression analysis, because Nm was low despite life-history differences among taxa in this region. Excluding observations from this region produced stronger associations between clutch size and Nm (r2 = 0.57), and between female size, egg size, and Nm (r2 = 0.95). Additional analyses that corrected for female body size and phylogenetic nonindependence agreed that darters with high fecundity and small eggs exhibited high gene flow, whereas darters with small clutches and large eggs had low gene flow. The latter combination of life-history traits primarily is exhibited in species from headwater habitats where parental investment presumably confers survivorship on offspring. Reduced gene flow and genetic divergence among demes appear to be evolutionary consequences of this strategy.  相似文献   

16.
The amount of gene flow among local populations partly determines the relative importance of genetic drift and natural selection in the differentiation of such populations. Land snails, because of their limited powers for dispersal, may be particularly likely to show such differentiation. In this study, we directly estimate gene flow in Albinaria corrugata, a sedentary, rock-dwelling gastropod from Crete, by mark-recapture studies. In the same area, 23 samples were taken and studied electrophoretically for six polymorphic enzyme loci. The field studies indicate that the population structure corresponds closely to the stepping-stone model: demes are present on limestone boulders that are a few meters apart, and dispersal takes place mainly between adjacent demes. Average deme size (N) is estimated at 29 breeding individuals and the proportion of migrants per generation at 0.195 (Nm = 5.7). We find no reason to assume long-distance dispersal, apart from dispersal along occasional stretches of suitable habitat. Genetic subdivision of the population, as derived from FST values, corresponds to the direct estimate only at the lowest spatial level (distance between sample sites < 10 m), where values for Nm of 5.4 and 17.6 were obtained. In contrast, at the larger spatial scales, FST values give gene-flow estimates that are incompatible with the expected amount of gene flow at these scales. We explain these discrepancies by arguing that gene flow is in fact extremely limited, making correct estimates of Nm from FST impossible at the larger spatial scales. In view of these low levels of gene flow, it is concluded that both genetic drift and natural selection may play important roles in the genetic differentiation of this species, even at the lowest spatial scales.  相似文献   

17.
Gene frequencies in large populations are determined by a balance between selection and gene flow between neighborhoods of different selection regimes. This balance is affected by the area of the patches of a given selection regime relative to the gene-flow distance. If patches are small relative to gene-flow distance, similarity in the total area occupied by different patch types is a crucial condition for the stability of polymorphisms. However, if patches are larger than the gene-flow distance, then the relative area of different patch types is less important because of reduced gene flow resulting from isolation by distance. Two morphs (striped and unstriped) of the walking-stick Timema cristinae were each strongly associated with patches of distinct species of food plants on which they are most cryptic. The frequency of a morph was high on the plant on which it is most cryptic when either: (1) the area occupied by the food plant (patch) was very large; (2) the patch was completely isolated from other patches; or (3) the patch was larger than adjacent patches. Results (1) and (2) are consistent with isolation-by-distance models, and result (3) is consistent with Levene's multiple-niche polymorphism model.  相似文献   

18.
It is commonly observed that a restricted gene flow among populations of a species generates genetic differentiation in, for example, allozyme markers. However, recent studies suggest that microhabitat-specific variation may contribute to the total differentiation. To appreciate the relative contributions of geographic variation and habitat-specific variation, we sampled 42 subpopulations of the intertidal snail Littorina saxatilis from three different microhabitats (boulders, low and high rocky intertidal) on five small islands within a distance of 15 km. We used a modified orthogonal version of Nei's gene diversity analysis with a modified analysis of variance (ANOVA) that estimated the significance of habitat and geographic separation and the interaction between them. Between subpopulation differentiation (GST) was usually in the range of 5% to 10% but was exceptionally high in one locus (Aat; 53%). Genetic differentiation attributable to different habitats accounted for 10% to 81% (mean 35%) of the between subpopulation variation and was significant (P < 0.05) in six loci. Differentiation due to geographic separation accounted for 11% to 61% (mean 36%) and was significant (P < 0.05) in seven loci. Furthermore, three loci showed interactions between habitat and island, suggesting varying effects of habitat in different islands. Microhabitat-specific variation, probably through spatially varying fitness, seems particularly likely in Aat and Pgm-2. Moderate levels of habitat associated variation added to the observed differentiation due to gene flow in Pgi, Pnp, and Pgm-1, whereas in the remaining three loci either the habitat effect was confused by strong habitat-island interaction (Ark) or was virtually absent (Pep and Mpi).  相似文献   

19.
The franciscana, Pontoporia blainvillei , is endemic to the South Atlantic coast of South America. The species is of conservation concern because it suffers elevated mortality rates due to incidental captures in fishing nets, and perhaps it is one of the most threatened small cetaceans in this region. Previous morphological and genetic studies have suggested the existence of at least two distinct stocks to the north and south of Santa Catarina Island in Brazil. Fixed differences were found between a sample from Rio de Janeiro and one from Rio Grande do Sul, in southern Brazil. Using 94 sequences of the control region of mitochondrial DNA, we examined the genetic structure of the species. We found no shared haplotypes between Rio de Janeiro and samples from the southern range of the species distribution. However, a phylogenetic analysis suggests that the former population is diphyletic with respect to the southern samples. This suggests that the populations have not been isolated long enough to reach reciprocal monophyly. Furthermore, genetic differentiation is broadly consistent with a simple model of isolation by distance, that therefore appears as an alternative to a model of strict isolation of two stocks. The estimated levels of gene flow are higher among neighboring populations, and decrease as more distant localities are compared. Finally, the molecular data suggest that franciscanas have expanded in Rio de Janeiro.  相似文献   

20.
Two hybridizing species of newts, Triturus cristatus and T. marmoratus, with overlapping distributions show a parapatric distribution when surveyed in detail. The factors that govern the distribution of cristatus vs. marmoratus in the département (province) of Mayenne in western France are identified as forestation and relief. The parapatric hybrid zone running through Mayenne is narrow but widens to approximately 20 km in an area with mixed habitat. In this area most breeding sites are shared and F1 hybrids form about 4% of the total population. Analysis of survey data collected about 30 years previously also shows an essentially parapatric distribution. Comparison of past and present distribution maps reveals that cristatus has superseded marmoratus over large areas in the south of Mayenne. An area where marmoratus replaced cristatus also exists, but it is more limited in size. Gene flow between cristatus and marmoratus is analyzed using 10 diagnostic genetic markers [9 protein loci and mitochondrial (mt) DNA]. In syntopic populations nuclear gene flow is bidirectional with a mean frequency of introgressed alleles (f) of 0.3%. In allotopic populations of cristatus and marmoratus gene flow is present in areas of species replacement (f = 0.3%), while gene flow appears to be absent in those areas that have been continuously occupied by a single species. At the biogeographic level, the presence or absence of introgression is paralleled by the persistence or absence, respectively, of pockets of cristatus–marmoratus syntopy. All F1 hybrids possess the cristatus type mtDNA. This may be due to asymmetric interspecific mate choice and would explain the observed absence of introgression of the maternally inherited mtDNA genome in areas where cristatus replaced marmoratus. The cristatus–marmoratus hybrid zone bears characteristics of both the clinal (parapatric) hybrid zone model and the mosaic hybrid zone model. Such a mixed model—for which we propose the term “reticulate hybrid zone”—can be appreciated only if studied over a two-dimensional geographic area and also through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号