首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxathiolanes and disulfonyl derivatives of steroids were tested for mutagenic activity in the Ames tester strains. The test compounds exhibited mutagenic activity without metabolic activation although metabolic activation markedly enhanced their activity. A significant decrease in the survival of the radiation-sensitive mutants recA, lexA and rer of E. coli was observed as compared to their wild-type counterpart in the presence of the test steroid. Structural features which appear to be crucial for the mutagenic activity in these steroidal drugs are: (i) an electron-donating group at position 3, and (ii) a bulky group anchored at the 5th and 6th positions. The test steroids appear to damage DNA which in turn initiates the SOS repair with the concomitant induction of mutation.  相似文献   

2.
The antibacterial and mutagenic potency of 9 nitrofurans in "treat and plate" experiments varied over almost 5 orders of magnitude. The relative toxicities were as follows: FANFT greater than AF2 greater than ANFT greather than furazolidone greater than furagin greater than nitrofurantoin greater than nitrofurazone greater than methylnitrofuroate greater than nitrofuroic acid. In general, mutagenic activity paralleled toxicity. The compounds at concentrations corresponding to their LD50's, induced mutations at frequencies which ranged from 2.5/10(6) survivors for FANFT to 130/10(6) survivors for furagin (NF416). The observed differences in antibacterial and mutagenic activity are unlikely to be due to lack of activation of the weaker agents since the two most potent agents were reduced somewhat more slowly than many of the less active agents. The relative sensitivities to the antibacterial effects of AF2 of strains WP2, WP2 uvrA, CM561 (lexA) and CM571 (recA) were 1 : 1.6 : 3 : 7 and to nitrofurazone 1 : 1 : 25 : 50. The wvrA strain was 6--7-fold more mutable with both these agents than was WP2. No increase over the spontaneous mutation frequency was observed when recA or lexA strains were exposed to either AF2 or nitrofurazone in these experiments. When wild-type of wvrA bacteria containing nitrofuran-induced lesions replicated their DNA in drug-free medium in the presence of [3H]thymidine for 5 min, the label was found in low molecular weight DNA indicating that daughter-strand gaps were formed. During subsequent incubation in nonradioactive medium the molecular weight of the DNA increased to the control value. A recA strain (which was very sensitive to the lethal effects of AF2 and nitrofurazone) lacked the ability to repair daughter-strand gaps caused by nitrofuran-induced lesions.  相似文献   

3.
The ability of plasmid R46 to reduce the lethal but enhance the mutagenic effect of ultraviolet (UV) irradiation was tested in sets of Escherichia coli K-12 derivatives, wild type or with different mutations affecting DNA repair capacity, but otherwise isogenic. UV protection and enhancement of UV mutagenic effect were obtained in uvrA6, uvrB5, uvrD3, and recF143 hosts, but not in a recA56 strain. The plasmid gave some UV protection in two lexA1 and two lexA101 strains and in one lexA102 host, but produced no such effect in another lexA102 host. The plasmid restored UV mutagenic effect in a lexB30 strain, the yield of induced mutants per survivor of irradiation (10 J/m2) being about the same for the lexB30(R46) and lex+(R46) strains; by contrast the plasmid, though it reduced the UV sensitivity of the lexB30 strain, did not make it as UV-resistant as the lex+ R-strain.  相似文献   

4.
The deficiency in UV mutagenesis in uvrD3 recB21 strains of E. coli is almost completely overcome by constitutive activation of RecA protein and expression of the SOS system (by recA730 or 43 degrees C treated recA441 lexA71). When SOS was expressed but RecA protein not self-activated (recA441 lexA71 at 30 degrees C), uvrD3 recB21 still reduced UV mutagenesis at low doses. The uvrD3 recB21 combination is therefore inhibiting activation of RecA protein. It is suggested that the DNA unwinding activity of the products of the uvrD and recB genes may be involved in generating single-stranded DNA needed to activate RecA protein both for the cleavage of LexA repressor and for a further role in UV mutagenesis.  相似文献   

5.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

6.
Mutagenesis was demonstrable after delayed photoreversal of UV-irradiated strains carrying a recA deletion indicating that RecA protein is not essential for the misincorporation process that is revealed by delayed photoreversal. Moreover, the data suggest that RecA protein actually depresses misincorporation to varying extents depending on the recA allele. No delayed photoreversal was demonstrable in reA1 or recA56 bacteria unless the lexA102(ind-) allele was also present. It is suggested that the level of these RecA proteins may be lower in the lexA102(ind-) strains thus minimising their depressive effect. Delayed photoreversal mutagenesis in strains carrying the recA441 allele was not affected by either adenine or guanosine plus cytidine, substances which affect the proteolytic activity of RecA441 protein.  相似文献   

7.
40 compounds structurally related to the plant flavonol quercetin were tested for mutagenic activity in Salmonella typhimurium strain TA98. 10 flavonols, quercetin, myricetin, rhamnetin, galangin, kaempferol, tamarixetin, morin, 3'-O-methylquercetin, 7,4'-di-O-methylquercetin and 5,7-di-O-methyl-quercetin, exhibited unequivocal mutagenic activity. 4 compounds, quercetin, myricetin, rhamnetin and 5,7-di-O-methylquercetin, were active without metabolic activation, although metabolic activation markedly enhanced their activity. All 4 have free hydroxyl groups at the 3' and 4' positions of the B ring. The other active compounds required an in vitro rat-liver metabolizing system for significant activity. Structural features which appear essential for mutagenic activity in this strain are a basic flavanoid ring structure with (1) a free hydroxyl group at the 3 position, (2) a double bond at the 2, 3 position, (3) a keto group at the 4 position, and (4) a structure which permits the proton of the 3-hydroxyl group to tautomerise to a 3-keto compound. The data are consistent with the requirement for a B ring structure that permits oxidation to quininoid intermediates. Free hydroxyl groups in the B ring are not essential for activity if a rat-liver metabolic activating system is employed. Data from 12 compounds which differ only at the essential sites described above indicate that the structural requirements for mutagenicity in strain TA100 are the same as those for activity in strain TA98. Based on the above structural requirements, a metabolic pathway for flavonol activation to DNA-reactive species is proposed.  相似文献   

8.
The mutagenic activity of five dichloroethylamino 2-nitrobenzofuran derivatives and one dichloroethylamino 2-nitronaphthofuran derivative was analysed in the Salmonella/microsome assay. We investigated the influence of the position of the dichloroethylamino and/or the methoxy groups on the mutagenic activity of these nitro arenofurans in S. typhimurium strain TA100 and its variant TA100NR, deficient in nitroreductase. Without metabolic activation 7-[bis(2-chloroethyl)amino]-2-nitronaphtho[2,1-b]furan (1), 4-[bis(2-chloroethyl)amino]-7-methoxy-2-nitrobenzofuran (2), 7-[bis(2-chloroethyl)amino]-4-methoxy-2-nitrobenzofuran (5) and 6-[bis(2-chloroethyl)amino]-2-nitrobenzofuran (6) are mutagenic in TA100, while 4-[bis(2-chloroethyl)amino]-5-methoxy-2-nitrobenzofuran (4) is weakly mutagenic and 5-[bis(2-chloroethyl)-amino]-2-nitrobenzofuran (3) toxic. In the NR deficient strain compounds 1, 3 and 6 are strong mutagens and 4 is weakly positive. The two isomers 2 and 5 are negative in that strain. The naphthofuran derivative 1 is highly mutagenic in the absence of S9 mix in both strains considered, but less than R7000 (7). A decrease in the electronic polarity of compound 1 versus compound 7 according to the hypothesis developed by Royer et al. is a possible explanation. After exogenous metabolic activation by S9 mix all the compounds tested are highly mutagenic in both Salmonella strains. The position of the dichloroethylamino group and/or the presence of a methoxyl on the alpha-nitroarenofuran derivatives seem to modify the activity of bacterial as well as exogenous nitroreductases or other activating enzymes.  相似文献   

9.
In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.  相似文献   

10.
Comparative mutagenesis and possible synergistic interaction between broad-spectrum (313- to 405-nm) near-ultraviolet (black light bulb [BLB]) radiation and 254-nm radiation were studied in Escherichia coli strains WP2 (wild type), WP2s (uvrA), WP10 (recA), WP6 (polA), WP6s (polA uvrA), WP100 (uvrA recA), and WP5 (lexA). With BLB radiation, strains WP2s and WP6s demonstrated a high level of mutagenesis, whereas strains WP2, WP5, WP6, WP10, and WP100 did not demonstrate significant mutagenesis. In contrast, 254-nm radiation was mutagenic in strains WP2, WP2s, WP6, and WP6s, but strains WP5, WP10, and WP100 were not significantly mutated. The absence of mutagenesis by BLB radiation in lexA and recA strains WP10, WP5, and WP100 suggests that lex+ rec+ repair may play a major role in mutagenesis by both BLB and 254-nm radiation. The hypothesis that BLB radiation selectively inhibits rec+ lex+ repair was tested by sequential BLB-254-nm radiation. With strain WP2, a fluence of 30 J/m2 at 254 nm induced trp+ revertants at a frequency of 15 X 10(-6). However, when 10(5) J/m2 or more of BLB radiation preceded the 254-nm exposure, no trp+ revertants could be detected. A similar inhibition of 254-nm mutagenesis was observed with strain WP6 (polA). However, strains WP2s (uvrA) and wP6s (polA uvrA) showed enhanced 254-nm mutagenesis when a prior exposure to BLB radiation was given.  相似文献   

11.
Escherichia coli lost its colony-forming ability when suspended in Tris/NaOH or Tris/Mg2+ buffers of pH 10.0 and 4.0, respectively. A significant decrease in the survival of radiation-sensitive mutants recA, polA, res, rer and lexA was observed as compared to their wild-type counterpart under these conditions. The alkali-injured cells were found to recover when incubated at 37 degrees C for 2 h in 0.05 M phosphate buffer of pH 8.0, whereas no such liquid holding recovery was observed in recA and lexA mutants. Recovery in phosphate buffer was not affected by metabolic inhibitors. As a result of alkali treatment, the sensitivity of bacteria to ultraviolet light (UV) was enhanced. However, on incubation for 2 h in recovery buffer at 37 degrees C, the bacteria regained partial UV resistance. Bacteria exposed to alkaline environment exhibited an enhanced level of mutagenesis. Contrary to the treated wild-type, the mutants recA and lexA did not exhibit any increase in the mutation frequency. Alkali treatment to GC----AT transition mutants of Salmonella typhimurium, TA102 and TA104 resulted in the highest number of revertants per plate.  相似文献   

12.
Benzotrichloride (BTC), benzal chloride (BDC), benzyl chloride (BC) and benzoyl chloride (BOC) were surveyed for their mutagenicity in microbial systems such as rec-assay using Bacillus subtilis and reversion assays using E. coli WP2 and Ames Salmonella TA strains with or without metabolic activation in vitro. BTC and BDC required metabolic activation for their mutagenic activities in several strains of E. coli and Salmonella. The mutagenic metabolites of these compounds may not have been produced by hydrolysis. BC was weakly mutagenic without metabolic activation. Only BOC exhibited no mutagenic activity in the detection procedures used. The mutagenic metabolite of BTC might be very unstable under our experimental conditions. The strain E. coli WP2 try hcr was more sensitive than E. coli B/r WP2 try (hcr+) with regard to the mutagenicity of BTC.  相似文献   

13.
Lethal action of gamma-rays on derivatives of the wild-type strain AB1157 and of two radiation-resistant mutants (Gamr444 and Gamr445) containing additional mutations dnaA46, recB21, recF143, recA56, recA430, lexA3, lexA102 or lexA3 recAo98, was studied. When the mean number of genomes per cell was reduced by means of pre-incubation at 43 degrees C, radioresistance of the strains AB1157 dnaA46 and Gamr445 dnaA46 was not changed, and that of the strain Gamr444 dnaA46 was reduced to the level of the Gamr445 dnaA46 strain. Introduction of additional mutations recB21, recA56 or lexA3 (lexA102) into the genome of the strains Gamr444 or Gamr445 made them as radiosensitive as the corresponding variants of AB1157. Additional mutations recF143 or recA430 (lexB30) significantly decreased the radioresistance of Gamr444 and Gamr445 mutants, although did not level them to corresponding derivatives of AB1157. Operator-constitutive mutation recAo98 enhanced radioresistance of all lexA3 derivatives tested but not to the level of the corresponding lexA+ strains. The role of recombinational repair and the inducible SOS system in enhanced radioresistance of Gamr mutants is discussed. The data of post-irradiation DNA degradation in various derivatives of the strains AB1157 and Gamr suggest that Gamr mutants have a constitutive inhibitor of degradation which does coincide with RecA protein.  相似文献   

14.
A series of 19 short chain dialkyl N-nitrosamines was studied for mutagenic activity in an uninduced hamster hepatocyte V79 cell-mediated mutagenesis system. Ouabain was used as the selective agent to quantitatively analyze for chemically induced mutants. None of the nitrosamines was mutagenic in the absence of hamster hepatocyte activation. The relative mutagenic activities of the nitrosamines at an equimolar dose are presented. The results of the study indicated that: (a) increasing alkyl chain length decreased mutagenic activity; (b) oxidation of the carbon position to a carbonyl group increased the mutagenic activity of symmetrical and asymmetrical nitrosamines, whereas oxidation to a hydroxyl group only increased the mutagenic activity of the asymmetrical nitrosamines tested and (c) the carbon position at which oxidation occurred was important in determining mutagenic activity. The relationships between structure, metabolic activation, and mechanisms of mutagenic activity are discussed.  相似文献   

15.
The recA730 mutation results in constitutive SOS and prophage induction. We examined biochemical properties of recA730 protein in an effort to explain the constitutive activity observed in recA730 strains. We find that recA730 protein is more proficient than the wild-type recA protein in the competition with single-stranded DNA binding protein (SSB protein) for single-stranded DNA (ssDNA) binding sites. Because an increased aptitude in the competition with SSB protein has been previously reported for recA441 protein and recA803 protein, we directly compared their in vitro activities with those of recA730 protein. At low magnesium ion concentration, both ATP hydrolysis and lexA protein cleavage experiments demonstrate that these recA proteins displace SSB protein from ssDNA in a manner consistent with their in vivo repressor cleavage activity, i.e. recA730 protein > recA441 protein > recA803 protein > recAwt protein. Additionally, a correlation exists between the proficiency of the recA proteins in SSB protein displacement and their rate of association with ssDNA. We propose that an increased rate of association with ssDNA allows recA730 protein to displace SSB protein from the ssDNA that occurs naturally in Escherichia coli and thereby to become activated for the repressor cleavage that leads to SOS induction. RecA441 protein is similarly activated for repressor cleavage; however, in this case, significant SSB protein displacement occurs only at elevated temperature. At physiological magnesium ion concentration, we argue that recA803 protein and wild-type recA protein do not displace sufficient SSB protein from ssDNA to constitutively induce the SOS response.  相似文献   

16.
The mutagenic activity and related biological properties of Br-, Cl-, NO2- and CH3-derivatives of 1-(phenyl)-3,3-dimethyltriazene were investigated in Salmonella/microsome assays with standard and preincubation metabolic activation and in the repair test using Salmonella and E. coli B/r. In the repair test, the CH3-derivative was slightly positive in the E. coli recA and uvrA repair system, the NO2-derivative had a killing effect on Salmonella typhimurium uvrB-deficient strains. In Salmonella mutagenicity assays, all tested triazene derivatives reverted frameshift tester strains, especially TA1537. The highest number of frameshift mutations was induced by the CH3-derivative in the presence of a standard metabolic activation system; direct mutagenicity of this derivative was weak, reaching about the same level of activity as seen after preincubation. The only test compound that induced mutations of the base-substitution type was the NO2-derivative; this derivative showed the highest mutagenicity when activated by preincubation.  相似文献   

17.
Sodium arsenite at a non-toxic concentration was found to inhibit strongly mutagenesis induced by ultraviolet light (UV), 4-nitroquinoline-1-oxide (4NQO), furylfuramide (AF-2) and methyl methane-sulfonate (MMS) as well as spontaneous mutation in the reversion assay of E. coli WP2uvrA/pKM101. The effect was not, however, seen in the case of the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In order to elucidate the mechanism of the mutation-inhibitory effect of sodium arsenite, its action on umuC gene expression and DNA-repair systems was investigated. It was found that sodium arsenite depressed beta-galactosidase induction, corresponding to the umuC gene expression. For UV-irradiated E. coli strains possessing different DNA-repair capacities, sodium arsenite decreased the UV survival rates of WP2, WP2uvrA[uvrA] and WP67[uvrA polA], increased those of SOS-uninducible strains having either the recA+ or uvrA+ such as CM571 [recA], CM561 [lexA(Ind-)] and CM611[uvrA lexA (Ind-)], and did not affect that of the uvrA recA double mutant, WP100. From these results, we assume that sodium arsenite may have at least two roles in its antimutagenesis: as an inhibitor of umuC gene expression, and as an enhancer of the error-free repairs depending on the uvrA and recA genes.  相似文献   

18.
The mapping of mutA and mutC mutator alleles to the glyV and glyW glycine tRNA genes, respectively, and the subsequent discovery that the mutA phenotype is abolished in a DeltarecA strain raise the possibility that asp --> gly misinsertion may induce a novel mutagenic pathway. The recA requirement suggests three possibilities: (i) the SOS mutagenesis pathway is activated in mutA cells; (ii) loss of recA function interferes with mutA-promoted asp --> gly misinsertion; or (iii) a hitherto unrecognized recA-dependent mutagenic pathway is activated by translational stress. By assaying the expression levels of a reporter plasmid bearing a umuC :lacZ fusion, we show that the SOS regulon is not in a derepressed state in mutA cells. Neither overexpression of the lexA gene through a multicopy plasmid nor replacement of the wild-type lexA allele with the lexA1[Ind-] allele interferes with the expression of the mutA phenotype. The mutA phenotype is unaffected in cells defective for dinB, as shown here, and is unaffected in cells defective for umuD and umuC genes, as shown previously. We show that mutA-promoted asp --> gly misinsertion occurs in recA- cells and, therefore, the requirement for recA is 'downstream' of mistranslation. Finally, we show that the mutA phenotype is abolished in cells deficient for recB, suggesting that cellular recombination functions may be required for the expression of the mutator phenotype. We propose that translational stress induces a previously unrecognized mutagenic pathway in Escherichia coli.  相似文献   

19.
20.
The lethal and mutagenic effects of nitrous acid (0,1 M NaNO2 in 0,1 M acetate buffer, pH 4.6) on prophage lambda cI857 ind- were studied in the wild-type cells of Escherichia coli and in 9 repair-deficient mutants: uvrA6, uvrA6 umuC36, uvrD3, uvrE502, polA1, recA13, lexA102, recF143 and xthA9. After treatment with HNO2, the prophage was heat-induced either immediately or after 90 min incubation in broth at 32 degrees C. The prophage survival after delayed induction was considerably higher than after immediate induction. The lethal action of HNO2 was highly expressed in uvrA- and uvrE- lysogens after delayed induction. The frequency of temperature-independent c mutants forming clear plaques at 32 degrees C reached 4% in the wild-type host after immediate induction, this value being 10-15% in uvrA, uvrA umuC, uvrD, uvrE, polA and xthA mutants, 0,8% in recF- lysogen and only 0,2-0,3% in recA and lexA mutants. Under these conditions, about 90% of c mutants are generated by recA+, lexA+-dependent repair mechanism (most probably, due to W-mutagenesis). After delayed induction, mutation frequency in the wild-type host declines considerably (down to 0,1%). Analogous phenomenon of mutation frequency decline was registered in uvrA, xthA, recF, polA, uvrE and uvrD lysogens. Under conditions of delayed induction, the frequency of HNO2-induced c mutations only slightly depends on the recA+ and lexA+ gene products and mutations are, apparently, fixed by replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号