首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Critical ischemia times and survival patterns of experimental pig flaps   总被引:1,自引:0,他引:1  
Previous work on critical ischemia time suggested (1) a greater susceptibility of myocutaneous flaps over skin flaps to the ischemia reperfusion injury and (2) that duration of ischemia may affect the survival area of a flap. Using a pig model, 55 animals were operated on and the critical ischemia times and survival patterns of the buttock skin (n = 85) and latissimus dorsi myocutaneous (n = 88) island flaps were determined after being submitted to 0, 2, 4, 6, 8, 10, 12, 14, and 16 hours of normothermic ischemia. The average critical ischemia times (CIT50) were determined to be 9 and 10 hours for the buttock skin and latissimus dorsi myocutaneous flaps, respectively. Percentage of total area surviving (%TAS) in those flaps which did survive was adversely affected by increases in the ischemic interval in both flap models. A statistically significant decrease in percentage of total area surviving was found after 6 and 8 hours of ischemia for the buttock skin and latissimus dorsi myocutaneous flaps, respectively.  相似文献   

2.
The current study investigated the effect of secondary ischemic insults on ultimate flap survival. Rodent skin flaps subjected to 8 hours of secondary ischemia with total pedicle obstruction had 56 percent survival (7 of 12) compared with primary ischemic flaps of the same time, which all survived. At 10 hours of ischemia, only 42 percent of secondary ischemic flaps survived compared with 67 percent (8 of 12) of primary ischemic flaps. When the secondary ischemia was caused by venous obstruction, the results were even more striking. Ninety-two percent (11 of 12) of primary venous obstruction flaps survived 3 hours of ischemia and 75 percent (9 of 12) survived 5 hours of ischemia, while only 56 percent (7 of 12) and 8 percent (1 of 12) of flaps subjected to secondary venous obstruction survived at the same times, respectively. The explanation of these observations on the basis of tissue pathophysiologic changes will require further study. The results support the need for close monitoring of clinical flaps to ensure optimal survival.  相似文献   

3.
Neutrophil localization following reperfusion of ischemic skin flaps.   总被引:3,自引:0,他引:3  
A swine model of island latissimus dorsi myocutaneous and buttock cutaneous flaps was used to examine neutrophil localization and flap survival after 6 hours of global ischemia followed by 24 hours of reperfusion. Radioactivity from autotransfused neutrophils labeled with indium-111 enabled their localization. Radioactivity in ischemic latissimus dorsi flaps was increased by 101 +/- 30 percent over contralateral control latissimus dorsi flaps (n = 6, p = 0.01). Radioactivity in ischemic buttock flaps was increased by 142 +/- 40 percent over contralateral control buttock flaps (n = 6, p = 0.008). Despite increased neutrophil localization to ischemic flaps, the magnitude of tissue radioactivity failed to provide sufficient information to predict ischemic injury as measured by flap survival and tissue water content.  相似文献   

4.
Altering the position (elevated or dependent) had no immediate effect on the blood supply of delayed or transplanted delayed tubed flaps. However, after 72 hours the mean survival length in the dependent tubes was less than that in the elevated tubes. (This difference was only significant in the delayed untransplanted flaps, and not so in the delayed transplanted flaps). All of the dependent tubes had a significant increase in water content (compared to the elevated tubes). This increase was greater in the transplanted delayed tubed flaps. The tissue pCO2 levels were significantly increased after 24 hours in the dependent transplanted tubes, reflecting poor circulation and ischemia in them. The rate of clearance of subcutaneously injected technetium-99m was significantly increased in the dependent transplanted tubes after 72 hours, while in the elevated tubes the clearance rate was similar to that in normal skin. The morphological appearance of the vessels in these flaps complemented the results of the functional study.  相似文献   

5.
The viability of the rabbit epigastric flap was investigated after a period of cold ischemia of 3, 4, or 5 days. Groups of flaps were either perfused with Ross's solution before ischemia (early perfusion), after ischemia (late perfusion), or not at all (control). Significantly more flap necrosis was formed at exploration 7 days after revascularization in the early perfusion group than in the control group (p less than 0.01). Late perfusion was not significantly detrimental to flap survival as compared with cold storage alone (0.1 less than p less than 0.5). It is concluded that early perfusion is detrimental to the ultimate fate of the cold ischemic flap, whereas late perfusion offers no advantage over cold storage alone.  相似文献   

6.
Pharmacologic alteration of the no-reflow phenomenon was determined based on increased tolerance to ischemia in ibuprofen-treated free flaps. Sprague-Dawley rats (N = 60) were divided into control (lactated Ringer's) and treated (ibuprofen) groups and subdivided into six groups of ischemia: 1 hour, 6 hours, 8 hours, 10 hours, 12 hours, and 14 hours of ischemia. Fluorescein uptake was measured after 10, 30, and 60 minutes following microrevascularization. Dye elimination studies were done for each ischemia group that demonstrated good fluorescein uptake. All free flaps in the 1-, 6-, and 8-hour groups survived. The ibuprofen-treated 10- and 12-hour flaps all survived, whereas the 10-hour control and 14-hour ibuprofen-treated free flaps failed to survive. Despite high fluorescein uptake, the 14-hour ibuprofen-treated flaps did not eliminate the fluorescein, whereas all surviving free flaps adequately eliminated the fluorescein. Failure to eliminate dye despite adequate uptake suggested a deranged microcirculation with increasing ischemia time. By inhibiting cyclo-oxygenase, nonsteroidal anti-inflammatory agents such as ibuprofen may block the untoward effects mediated by thromboxane A2, such as vasoconstriction, microvasculature thrombus formation, and intravascular sludging. These effects are theorized in part to be responsible for the failure of a free flap to survive despite revascularization.  相似文献   

7.
The present study evaluated the ability of DHV-PGE2ME, a topically effective 16-vinyl prostaglandin E2 analogue, to improve the tolerance of skin flaps to a period of ischemia. DHV-PGE2ME and placebo were applied to bilateral island flaps on 70 anesthetized rats; then the vascular pedicle of each flap was clamped for 10 hours. Treated flaps evidenced significantly better reperfusion, as documented by quantification of fluorescein dye delivery at 90 minutes after clamp release, and they had significantly greater ultimate viability (p less than 0.05, by ANOVA). While less than 3 percent of untreated flaps survived, those treated with 1.75 and 17.5 microgram/cm2 of drug evidenced 76 and 86 percent survival, respectively. Treatment of a given flap did not affect its contralateral mate, since there was no evidence of a systemic effect. Especially since its effect can be limited to the site of application, DHV-PGE2ME should be valuable for the treatment of compromised perfusion in a variety of settings.  相似文献   

8.
In a blinded study, 24 pigs were randomized to a 5-day preoperative treatment regimen of cyclophosphamide (n = 12) or placebo (n = 12). At operation, buttock cutaneous and latissimus dorsi myocutaneous flaps were created and then subjected to 6 hours of global ischemia. After 24 hours of reperfusion, flap skin and muscle survivals were determined. All cyclophosphamide-treated animals were rendered neutropenic (less than 500 neutrophils/mm3 of peripheral blood). The results show that neutropenia had no effect on postischemic buttock cutaneous flap survival. In contrast, cyclophosphamide-induced neutropenia demonstrated a significant protective effect on postischemic latissimus dorsi myocutaneous flap survival. This study further implicates the neutrophil as a significant factor in the mediation of ischemia/reperfusion injury of myocutaneous flaps.  相似文献   

9.
Klein MB  Chan PH  Chang J 《Plastic and reconstructive surgery》2003,111(1):251-5; discussion 256-7
Reperfusion of ischemic tissues can be associated with structural and functional injury, which is referred to as ischemia-reperfusion injury. Superoxide dismutase is an endogenous free radical scavenger that converts toxic oxygen derived free radicals to hydrogen peroxide. With the development of gene cloning technology, the potential of manipulating cells to overexpress endogenous proteins has been realized. Transgenic mice capable of overexpressing superoxide dismutase, and knockout mice in which the gene responsible for its production has been deleted, were used as a model to examine the protective effects of superoxide dismutase against ischemia-reperfusion injury. Epigastric island flaps were elevated in wild-type (control), transgenic superoxide dismutase 1, and knockout superoxide dismutase 1 mice and subjected to ischemic intervals of 0, 3, 6, 9, or 12 hours. Five animals were studied at each time point in each study group. Flap viability was assessed on postoperative day 7. Baseline wild-type flap survival was 100 percent after 3 hours of ischemia and subsequent reperfusion; survival decreased to 21 percent after 9 hours of ischemia. Transgenic mice had significantly higher flap survival than wild-type animals after 6 hours of ischemia and subsequent reperfusion (97.0 versus 85.2 percent) and after 9 hours of ischemia (82 versus 21 percent, p < 0.01). In knockout mice, there was complete flap necrosis after as little as 3 hours of ischemia. This study confirms the protective effects of superoxide dismutase against ischemia-reperfusion injury. In addition, its deficiency results in a dramatic susceptibility to ischemic injury.  相似文献   

10.
Ischemia-reperfusion injury causes tissue damage that leads to a decrease in bioavailability of nitric oxide. The authors hypothesized that an exogenous supply of nitric oxide will have beneficial effects on survival of skin and skeletal muscle subjected to ischemia-reperfusion injury. By using the nitric oxide donor SIN-1 (3-morpholino-sydnonimine) the effects of direct intraarterial infusion of an exogenous source of nitric oxide in reperfused flaps was studied. Bilateral island buttock skin flaps and latissimus dorsi myocutaneous flaps were elevated in eight pigs, for a total of 32 flaps. Flaps were subjected to 6 hours of ischemia followed by 18 hours of reperfusion. Flaps on one side of each animal were randomized to be treated with the nitric oxide donor (treatment group). The contralateral side was treated with an equivalent volume of saline vehicle (infusion control) SIN-1, or saline was administered as a continuous direct intraarterial infusion at the onset of reperfusion and continued during the observation period. Outcomes measured were tissue neutrophil accumulation by using myeloperoxidase assay and tissue survival (intravenous fluorescein and nitroblue tetrazolium for skin and muscle, respectively). In both skin and myocutaneous flaps, SIN-1 treatment caused a significant improvement in survival and a decrease in neutrophil accumulation. Nitric oxide may play an important role in the pathophysiologic process of ischemia-induced reperfusion injury in skin and skeletal muscle. Nitric oxide donors may be a promising family of therapeutic agents for the prevention of ischemia-induced reperfusion injury in cutaneous and myocutaneous flaps.  相似文献   

11.
Currently, spinal cord stimulation is used to treat ischemia and ischemic pain, with the best results observed in vasospastic cases. It was earlier demonstrated that spinal cord stimulation may attenuate experimentally induced vasospasm in an island flap in the rat. The present study was designed to investigate whether preemptive spinal cord stimulation could increase long-term flap survival and to explore the neurohumoral mediation of the effect. A total of 56 rats were implanted with chronic spinal cord stimulation systems. Three days later, a groin flap based on the superficial epigastric vessels was harvested, and the single feeding artery was occluded by a detachable microvascular clip. After 12 hours, the clip was removed. Flap survival was evaluated after 7 days. Immediately before flap surgery, two groups of animals received 30 minutes of stimulation using current clinical parameters and with stimulation amplitudes of 70 (n = 10) or 90 percent (n = 8) of that evoking muscular contractions. The outcomes in these groups were compared with those in two control groups (n = 20; n = 10). In one group, an additional calcitonin gene-receptor peptide (CGRP) antagonist was intravenously injected before stimulation (n = 8). In the control groups without stimulation, virtually all flaps necrotized. In treated groups, flap survival was 60 percent at the lower intensity and almost 90 percent at the higher one. The administration of a CGRP antagonist before treatment reduced its efficacy to below 40 percent survival. The differences between the untreated and treated groups were significant. The decrease in survival after CGRP-receptor block was significant in one of two tests. Preemptive spinal cord stimulation increases survival of skin flaps with critical ischemia. The effects are dependent on the stimulation intensity and are possibly mediated by the release of CGRP in the periphery.  相似文献   

12.
Free radicals and other toxic oxygen species play a role in the pathogenesis of ischemic organ damage. The abdominal skin flap has been used as a model to study the effects of superoxide dismutase on the survival of ischemic skin. We have evaluated the evolution of functional and structural injury to the vasculature after ischemic injury in superoxide dismutase-treated and control skin flaps. Ischemia was induced by creating abdominal skin flaps and occluding either the venous or both the venous and arterial blood supplies. Superoxide dismutase was administered immediately after the occlusion was released. At 1 hour of reflow, erythrocyte stasis, platelet deposition, neutrophil adherence, and injury to the endothelium of the large vessels and of the microvasculature were evident. The blood flow in the ischemic skin was only 3 percent of normal. Superoxide dismutase caused no change in the ultrastructure of the vasculature and a marginal decrease in vascular permeability in the ischemic skin at 1 hour of reflow. Increased fluorescent staining of the skin was evident after 24 hours of reflow in the superoxide dismutase-treated flaps. These findings indicate that injury to vascular endothelium by ischemia and reperfusion plays a role in the evolution of skin necrosis.  相似文献   

13.
Fasciocutaneous flaps: an experimental model in the pig   总被引:2,自引:0,他引:2  
No experimental studies have substantiated the claim that fasciocutaneous flaps are superior to skin flaps. Using fasciocutaneous flaps designed in the pig, both flap survival and blood flow were assessed. The forelimb and hindlimb fasciocutaneous flaps survived to 8.2 +/- 0.3 cm and 7.9 +/- 0.3 cm, respectively, compared with 7.3 +/- 0.3 cm and 6.7 +/- 0.3 cm for the comparable cutaneous flaps, a statistically significant finding (p less than 0.01). Random fasciocutaneous flaps survive 12 to 18 percent longer than skin flaps. Using the radioactive microsphere technique, blood flow was measured after flap elevation, and flap survival was estimated using fluorescein. Again, a significant difference in flap survival was found, but there was no significant difference in measured blood flow. This can be explained by the relatively large interval between blood flow measurements (2 cm) compared with the observed difference in survival length (1.0 +/- 0.3 cm).  相似文献   

14.
Fiberoptic perfusion fluorometry and assessment of ultimate viability were used to analyze the tolerance to warm ischemia of rat vascular island skin flaps. Both acute flaps and flaps raised 24 hours previously and then reraised were subjected to 0 (control), 6, 8, 10, and 12 hours of vascular pedicle clamping. Following clamp release, serial fluorometry documented the progressive delay in effective reflow resulting from extended periods of ischemia. Fluorometry, furthermore , suggested that flaps constructed 24 hours previously had an improved hemodynamic status with a significantly reduced period of poor reflow following clamp release. The improved hemodynamics were associated with increased viability, confirming the increased tolerance of 24-hour-old flaps to warm ischemia.  相似文献   

15.
The objective of this study was to examine the role of mast cells and their principal product, histamine, in ischemia/reperfusion injury. Cromolyn sodium, diphenhydramine, and cimetidine were administered to ischemic flaps just before reperfusion and evaluated for flap survival, mast cell count, neutrophil count, and myeloperoxidase levels. Epigastric island skin flaps were elevated in 49 rats; they were rendered ischemic by clamping the artery for 10 hours. Thirty minutes before reperfusion, the rats were treated with intraperitoneal saline (n = 11), cimetidine (n = 11), diphenhydramine (n = 11), or cromolyn sodium (n = 10). Flap survival was evaluated at 7 days. Neutrophil counts, mast cell counts, and myeloperoxidase levels were evaluated 12 hours after reperfusion. Flap necrosis in the sham group of animals (n = 6) was 0.0 percent, as expected, whereas the control group (saline-treated animals) had 47.3+/-33.4 percent necrosis. Animals treated with diphenhydramine and cimetidine demonstrated a significant decrease in flap necrosis to 17.7+/-8.8 percent and 19.4+/-14.7 percent, respectively. This protective effect was not seen with cromolyn sodium (44.3+/-35.6 percent). Both neutrophil and mast cell counts were significantly decreased in flaps from antihistamine-treated and sham animals versus both saline- and cromolyn sodium-treated groups. The administration of diphenhydramine and cimetidine before reperfusion can significantly reduce the extent of flap necrosis and the neutrophil and mast cell counts caused by ischemia/reperfusion. This protective effect is not seen with cromolyn sodium. The protective effect of antihistamines on flap necrosis might be related to the decrease in neutrophils and, possibly, mast cells within the flap.  相似文献   

16.
Cutaneous circulation in 4 X 10 cm skin samples and delayed and acute random skin flaps constructed on the flanks of castrated Yorkshire pigs (13.3 +/- 0.7 kg; n = 12) were studied during intravenous infusion (0.5 ml per minute) of 5% dextrose solution (vehicle) and 5% dextrose containing norepinephrine (1 microgram/kg per minute). Total and capillary blood flow and A-V shunt flow were measured by the radioactive microsphere technique 6 hours after the raising of 4 X 10 cm single-pedicle acute and delayed random skin flaps using the technique and calculations published previously. Fluorescein dye test was also performed to assess vascular perfusion. It was observed that the capillary blood flow in the single-pedicle delayed skin flaps was similar to that in the normal skin, and the maintenance of this normal skin blood flow was not due to the closing of A-V shunt flow in the delayed skin flaps. Similarly, the significant (p less than 0.01) decrease in capillary blood flow and distal perfusion in the acute skin flaps compared with the delayed skin flaps was not due to the opening of A-V shunts in the acute skin flaps. There was no evidence to indicate that A-V shunt flow per se was the primary factor for the regulation of capillary blood flow in the acute and delayed skin flaps in the pig. Our data seemed to indicate that tissue ischemia in the distal portion of acute skin flaps was likely the result of vasoconstriction of the small random arteries which supplied blood to arterioles and A-V shunts, and locally released neurohumoral substances may play an important role in the pathogenesis of vascular resistance and ischemia in the acute skin flaps.  相似文献   

17.
Nitric oxide is produced from the amino acid L-arginine by nitric oxide synthase, which has three known isoforms: (1) endothelial nitric oxide synthase and (2) brain nitric oxide synthase, both of which are constitutive nitric oxide synthase; and (3) inducible nitric oxide synthase. The authors' hypothesis is that after reperfusion injury, endothelial cell dysfunction leads to disruption of nitric oxide synthase-mediated nitric oxide production and that this may in part explain the deleterious effects of ischemia-reperfusion injury on tissue survival and blood reflow in flaps. An experiment was designed to study the effects of ischemia-reperfusion injury on the bioactivity of all three isoforms of nitric oxide synthase. Buttock skin flaps and latissimus dorsi myocutaneous flaps were elevated in eight pigs. Flaps on one side of the animal were randomized to receive 6 hours of arterial ischemia, whereas flaps on the other side served as controls. At 6 hours of ischemia and at 1, 4, and 18 hours after reflow, tissue biopsy specimens were obtained and were processed for both constitutive nitric oxide synthase and inducible nitric oxide synthase enzyme activity on the basis of the L-citrulline assay. In addition, specimens were processed for Western blot analysis of the three isoforms. The authors' results revealed three key findings: first, there was a statistically significant (p < 0.001) decrease in constitutive nitric oxide synthase activity of ischemia-reperfusion-injured flaps as compared with controls in both skin and muscle for all time intervals measured. Second, Western blot analyses of endothelial nitric oxide synthase and brain nitric oxide synthase showed a significant decrease in the signal intensity in ischemic and reperfused tissue as compared with controls. Third, the inducible nitric oxide synthase isoform's activity and protein remained undetectable in both tissue types for all time points measured. The authors' data demonstrated that following ischemia-reperfusion injury in the pig flap model there was a disruption of constitutive nitric oxide synthase expression and activity, which may lead to decreased nitric oxide production. The significant decrease in nitric oxide synthase activity found in the current study may partly explain the mechanism of tissue damage in flaps subjected to ischemia-reperfusion injury. Knowledge of the kinetics of nitric oxide synthase activity under conditions of ischemia-reperfusion injury has important implications for the choice and timing of delivery of therapeutic agents whose goal is to increase the bioavailability of nitric oxide in reperfused tissue.  相似文献   

18.
Fat necrosis remains a serious complication in reconstructive flaps. In clinical setting, it is well known that fat tissue is more susceptible to ischemic events. We aimed to evaluate early histological and biochemical changes of adipofascial tissue in an experimental model. An epigastric flap model in rats was used to evaluate the effect of ischemia-reperfusion (I-R) injury on adipofascial tissue. Two groups of animals (one with ischemia alone and other ischemia-reperfusion group) were used to evaluate the degree of histological edema, congestion and extravascular bleeding, and early biochemical alterations within the adipofascial flaps. The biochemical parameters included glutathione (GSH) and malondialdehyde (MDA). In each group, contralateral groin subcutaneous adipose tissue served as control. These evaluations were compared to normal unmanipulated, contralateral abdominal subcutaneous adipose tissue. The ischemia-reperfused flap group showed histologically significantly much edema congestion and bleeding than the control groups (P<.0001). The control group showed less edema in fat tissue than the ischemia-alone group (P<.05). All of the flaps in the ischemia-only group showed significantly less bleeding and edema than I-R group (P<.001). The ratio of MDA/GSH was 33 in control, 37 in ischemia alone, and 82 in ischemia-reperfusion groups, respectively. This study confirms that significant histologic and biochemical alteration occurs after ischemia and ischemia-reperfusion events in adipose tissue. Marked drop in adipose tissue antioxidant levels after I-R suggested that preemptive measures to this decrease should be undertaken in clinical settings.  相似文献   

19.
Preischemic flap washout and its effect on the no-reflow phenomenon   总被引:1,自引:0,他引:1  
Preischemic perfusion washout with an acellular physiologic solution delays the no-reflow phenomenon and improves tissue survival in rat epigastric free flaps following 18 and 24 hours of normothermic ischemia. This implies that stagnating blood may be a causative agent in the no-reflow phenomenon. A possible mechanism for this is capillary endothelial damage secondary to the presence of formed blood cells or their products of hemolysis. Perfusion washout may improve ischemic tolerance by preventing this blood cell-induced endothelial damage and by the prevention of sludge and thrombus. Whether any of the metabolic components of the perfusate actively enhance ischemic tolerance cannot be definitively stated.  相似文献   

20.
Radiation effects after reconstructive surgery (free-skin grafts and skin flaps) were studied in the rat, and the optimum time for irradiation was determined. The radiosensitivity of both free-skin grafts and skin flaps showed the same trend depending on time of irradiation after operation. The grafts or flaps irradiated in the hypervascular stage showed severe reactions to irradiation, whereas those irradiated in the hypovascular stage showed milder reactions in gross and microangiographic observation. Vascular damage should be given primary consideration when deciding the proper time for irradiation after reconstructive surgery. In general, free-skin grafts showed more severe reactions than skin flaps, especially in the grafts irradiated in the early stage after operation. The experimental results of this study cannot be readily transferred to a clinical setting, but they suggest that postoperative irradiation could be begun 3 to 4 weeks after operation with respect to graft or flap survival, and the results of the clinical cases almost coincide with these experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号