首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of hepatocytes from pregnant rats with dithiothreitol decreased specific 125I-prolactin (125I-prl) binding to such cells by about 20% relative to control. This was not due to a non-specific effect of dithiothreitol on the cell membrane, since reduction also altered the binding of prl to solubilized partially purified receptor. Exposure of hepatocytes to N-ethylmaleimide (6 mM) for periods as brief as 1 min decreased the subsequent specific binding of 125I-prl by more than 50%. N-Ethylmaleimide was less effective as an inhibitor of binding when applied after hepatocytes had been exposed to 125I-prl, binding being decreased by about 15%. Scatchard analysis demonstrated that the effect of N-ethylmaleimide resulted from loss of receptor-binding capacity without any substantial effect on the affinity of the prl receptor for hormone. Dithiothreitol diminished the affinity of lactogenic sites for prolactin without altering cellular binding capacity. These observations suggest that thiol and disulphide groups are present in the prl receptor and that these functional moieties regulate the formation and properties of prl receptor complexes. The species to which 125I-prl had bound were identified by affinity labelling. 125I-prl was covalently coupled into saturable complexes of Mr 65000 and 50000. 125I-human growth hormone (125I-hGH) was covalently incorporated into complexes of Mr 300 000, 220 000, 130 000, 65 000 and 50 000. Bovine growth hormone (bGH), but not prl, competed for 125I-hGH uptake into the 300 000-, 220 000- and 130 000-Mr complexes, indicating that these species were somatogenic. Prl, but not bGH, inhibited 125I-hGH uptake into 65 000- and 50 000-Mr complexes. This demonstrated that 125I-hGH in the presence of bGH could affinity-label lactogenic receptors. 125I-prl aggregates in Triton X-100, whereas 125I-hGH does not. Therefore lactogenic complexes to which 125I-hGH was bound in the presence of excess bGH were solubilized in Triton X-100 and characterized sequentially by gel filtration and affinity labelling. Prl receptors were eluted from columns of Sepharose 6B as a species of Mr380 000. Fractionation of the 380 000-Mr species on sodium dodecyl sulphate polyacrylamide gels resulted in the isolation of complexes of Mr 65 000 and 50 000. Thus non-covalent forces stabilize aggregates of the monomeric prolactin receptor.  相似文献   

2.
Hormone-induced conformational changes in the hepatic insulin receptor   总被引:3,自引:0,他引:3  
The insulin receptor can exist in either a lower or a higher affinity state. Hormone binding alters the equilibrium between the two states of the insulin receptor, favoring the formation of that of higher affinity (Corin, R.E., and Donner, D.B. (1982), J. Biol. Chem. 257, 104-110). After brief or extended incubations with hormone, during which the fraction of higher affinity receptors increased, 125I-insulin was covalently coupled to the alpha subunits of its receptor using disuccinimidyl suberate. Some 125I-insulin remained bound to higher affinity receptors after dissociation of hormone from lower affinity sites. This hormone could also be covalently coupled to the alpha subunit of the receptor. During extended incubations between 125I-insulin and liver plasma membranes, components of the receptor were cleaved to yield degradation products of 120,000 and 23,000 Da. The significance of this process remains undetermined. Unoccupied insulin receptors were cleaved by trypsin to produce fragments of 94,000 and 37,000 Da which remained membrane-bound and could be covalently coupled to 125I-insulin. Trypsin treatment after binding yielded an additional receptor fragment of 64,000 Da. As the incubation time between 125I-insulin and membranes was lengthened, components of the receptor became progressively less sensitive to trypsin. Higher affinity binding sites isolated after release of rapid dissociating insulin were less sensitive to trypsin than were mixtures of higher and lower affinity receptors. These observations suggest that hormone binding produces two conformational changes (alterations of tryptic lability) in the hepatic insulin receptor. The first change is rapid and exposes parts of the receptor to tryptic degradation. The second, slower conformational change renders the receptor less sensitive to trypsin and occurs with the same time course as the increase of receptor affinity mediated by site occupancy.  相似文献   

3.
125I-Insulin binding to rat liver plasma membranes initiated two processes that occurred with similar time courses: an increase of receptor affinity for hormone and degradation of the Mr 135,000 alpha subunit of the insulin receptor to a fragment of Mr 120,000. Inhibitors of serine proteinases prevented alpha subunit degradation without affecting the affinity change. This shows that the change of affinity is not produced by receptor proteolysis and that the intact alpha subunit of the insulin receptor can exist as a higher or lower affinity species. Hormone binding was much more rapid than receptor proteolysis and the initial rate of alpha subunit degradation was independent of the concentration of occupied lower affinity receptors. Only persistent hormone binding and the accumulation of higher affinity insulin-receptor complexes led to significant receptor proteolysis. As the incubation time between 125I-insulin and membranes increased, the rate at which hormone dissociated from Mr 135,000 complexes diminished, whereas hormone dissociated from Mr 120,000 complexes slowly after brief or extended incubations. These observations suggest that 125I-insulin binds to membranes to form low affinity complexes that are not substrates for proteolysis. A slow conformational change produces higher affinity hormone-receptor complexes that are selectively degraded. Thus, the conversion between states of affinity may play a role in the regulation of receptor proteolysis and, consequently, insulin action in cells.  相似文献   

4.
To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, we prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the alpha-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor.  相似文献   

5.
Antisera against a partially purified growth hormone receptor derived from rabbit liver were generated in guinea pigs. The antisera specifically inhibited the binding of 125I-ovine growth hormone (oGH) to liver membranes but had no effect on the binding of 125I-ovine prolactin to rabbit mammary gland receptors. These antisera did not bind or destroy 125I-oGH. Moreover, the binding of labeled growth hormone to membrane particles derived from liver of several species was also inhibited by the antisera, thus suggesting that immunological determinants of the growth hormone receptor of several species are similar. gamma-Globulin fractions derived from the antisera were responsible for the inhibition. In addition 125I-gamma-globulin derived from one antiserum bound to membrane pellets with a corresponding decline in 125I-oGH binding. Kinetic analysis of inhibition of 125I-oGH binding suggested a hyperbolic competitive inhibition, a point of view which is favored by the demonstration of a hormone receptor . antibody complex. The availability of the antireceptor sera confirmed previous data that differential affinity chromatography separated growth hormone and prolactin receptors in solubilized rabbit liver membrane preparations. The antireceptor sera will be useful probes in further characterization of the growth hormone receptor.  相似文献   

6.
The rat liver insulin receptor   总被引:1,自引:0,他引:1  
Using insulin affinity chromatography, we have isolated highly purified insulin receptor from rat liver. When evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions, the rat liver receptor contained the Mr 125,000 alpha-subunit, the Mr 90,000 beta-subunit, and varying proportions of the Mr 45,000 beta'-subunit. The specific insulin binding of the purified receptor was 25-30 micrograms of 125I-insulin/mg of protein, and the receptor underwent insulin-dependent autophosphorylation. Rat liver and human placental receptors differ from each other in several functional aspects: (1) the adsorption-desorption behavior from four insulin affinity columns indicated that the rat liver receptor binds less firmly to immobilized ligands; (2) the 125I-insulin binding affinity of the rat liver receptor is lower than that of the placental receptor; (3) partial reduction of the rat liver receptor with dithiothreitol increases its insulin binding affinity whereas the binding affinity of the placental receptor is unchanged; (4) at optimal insulin concentration, rat liver receptor autophosphorylation is stimulated 25-50-fold whereas the placental receptor is stimulated only 4-6-fold. Conversion of the beta-subunit to beta' by proteolysis is a major problem that occurs during exposure of the receptor to the pH 5.0 buffer used to elute the insulin affinity column. The rat receptor is particularly subject to destruction. Frequently, we have obtained receptor preparations that did not contain intact beta-subunit. These preparations failed to undergo autophosphorylation, but their insulin binding capacity and binding isotherms were identical with those of receptor containing beta-subunit. Proteolytic destruction and the accompanying loss of insulin-dependent autophosphorylation can be substantially reduced by proteolysis inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Concanavalin A, which binds to specific carbohydrate determinants on the cell surface, was used to investigate the binding of prolactin to its receptors in liver membranes from female rats. The binding of 125I-labeled ovine prolactin to receptors was sharply inhibited by concanavalin A. This effect was reversed by the competitive sugar alpha-methyl-D-mannopyranoside and thus required the presence of specifically bound lectin. Concentrations of concanavalin A of up to 50 mu/ml caused a progressive decrease in the apparent affinity of the prolactin receptor for hormone. When higher concentrations were used, the number of available binding sites decreased. Concanavalin A-resistant receptors, about 30% of the total, had the same dissociation constant (Kd) as the controls. The binding of 125I-labeled concanavalin A in the same membrane preparations showed the presence of two distinct types of concanavalin A binding. At low concentrations, the lectin bound with high affinity (Kd approximately equal to 6.6 . 10(-8) M. At high lectin concentrations, low affinity (Kd approximately equal to 6.7 . 10(-5) M) binding predominated. Since high affinity concanavalin A binding was saturated at 50 microgram/ml, this class of binding most likely alters the affinity of the prolactin receptor for hormone; low affinity concanavalin A binding may mask prolactin receptors, making them inaccessible to the hormone. Binding sites for concanavalin A and prolactin appear to be independent but closely related since (i) concanavalin A did not displace bound prolactin from its receptor, and (ii) detergent-solubilized 125I-labeled prolactin-receptor complexes bound to concanavalin A-Sepharose and were eluted by alpha-methyl-D-mannopyranoside.  相似文献   

8.
Insulin receptors can be purified by affinity chromatography on immobilized insulin, but published methods all suffer from a rather low capacity of the affinity columns. By using insulin that has been protected in positions A1 and B29, we have been able to couple the insulin selectively through the B1 amino group to divinyl sulfone-activated agarose. The N terminus of the B-chain is the most innocuous site as far as receptor-insulin interaction is concerned, and this strategy allowed us to make affinity columns with capacities of several milligrams of receptor/ml of resin. The receptor used was the soluble ectodomain of the human insulin receptor, produced in transfected baby hamster kidney cells. The column preparation and the elution conditions are described in detail, as the efficacy of the purification depends strongly on both. The purity of the eluted receptors was so high that quantitative amino acid analysis fitted with theory. The molar absorption coefficient at 278.5 nm was 296,000 M-1 cm-1. Finally, it could be unequivocally established that the soluble receptor binds two molecules of insulin with equal affinity.  相似文献   

9.
We describe the identification and purification of a receptor for calcitonin-gene-related peptide (CGRP) from human term placenta, using lectin and beta-CGRP-Affigel affinity chromatography. The membrane-bound receptor has an estimated Mr of 240,000, as determined by cross-linking 125I-labelled alpha-CGRP (125I-alpha-CGRP) using discuccinimidyl suberate and SDS/polyacrylamide gel electrophoresis, or of 263,000, as judged by sucrose gradient centrifugation of the soluble partially purified native receptor preparation. Cross-linking studies with disuccinimidyl suberate and N-hydroxysuccinimidyl-4-azidobenzoate using membrane-solubilised, partially purified and CGRP-affinity-purified preparations, show a number of 125I-alpha-CGRP binding subunit(s) of Mr 62,000-68,000. Silver staining of the purified CGRP receptor preparation showed two distinct doublets in this plus a number of minor doublets of lower Mr. The receptor binds human beta-CGRP with greater affinity than alpha-CGRP, and showed little affinity for human calcitonin. Adsorption isotherms and Scatchard analysis of 125I-alpha-CGRP binding to the membrane-bound or soluble purified receptor are consistent, under the conditions used, with a single binding site of high affinity. Molecular cloning at present in progress should define the amino acid sequence and subunit composition of the human placental CGRP receptor, since at present the observed heterogeneity of CGRP-binding proteins may be interpreted in a number of ways, for instance: receptor heterogeneity, variable glycosylation of one of two subunits, or limited proteolysis of a single subunit during purification.  相似文献   

10.
NSILA-s (nonsuppressible insulin-like activity, soluble in acid ethanol) is a serum peptide that has insulin-like and growth-promoting activities. We have demonstrated previously that liver plasma membranes possess separate receptors for NSILA-s and insulin and have characterized the insulin receptor in detail. In the present study we have characterized the properties and specificity of the NSILA-s receptor and compared them to those of the insulin receptor in the same tissue. Both 125I-NSILA-s and 125I-insulin bind rapidly and reversibly to their receptors in liver membranes; maximal NSILA-s binding occurs at 20 degrees while maximal insulin binding is seen at 1-4 degrees. The pH optimum for NSILA-s binding is broad (6.0 to 8.0), in contrast to the very sharp pH optimum (7.5 to 8.0) for insulin binding. Both receptors exhibit a high degree of specificity. With the insulin receptor, NSILA-s and insulin analogues compete for binding in proportion to their insulin-like potency: insulin greater than proinsulin greater than NSILA-s. With the NSILA-s receptor, NSILA-s is most potent and the order is reversed: NSILA-s greater than proinsulin greater than insulin. Furthermore, six preparations of NSILA-s which varied 70-fold in biological activity competed for 125I-NSILA-s binding in order of their potencies. NSILA-s which had been inactivated biologically by reduction and aminoethylation and growth hormone were less than 1/100,000 as potent as the most purified NSILA-s preparation. Purified preparations of fibroblast growth factor, epidermal growth factor, nerve growth factor, and somatomedins B and C were less than 1% as effective as NSILA-s in competing for the 125I-NSILA-s suggesting that these factors act through other receptors. In contrast, somatomedin A was 10% as active as NSILA-s and multiplication-stimulating activity was fully as active as NSILA-s in competing for the NSILA-s receptor. Analysis of the data suggests that there are approximately 50 times more insulin receptors than NSILA-s receptors per liver cell, while the apparent affinity of NSILA-s receptors is somewhat higher than that of the insulin receptor.  相似文献   

11.
We examined the effect of insulin treatment on HTC cells transfected with large numbers of either normal insulin receptors (HTC-IR) or insulin receptors defective in tyrosine kinase (HTC-IR/M-1030). In both HTC-IR and HTC-IR/M-1030 cells, 20 h of insulin treatment (1 microM) at 37 degrees C resulted in a 65% decrease in the number of binding sites with a reciprocal 6-fold increase in affinity. In contrast, treatment with 10 nM insulin (20 h, 37 degrees C) also increased receptor affinity but had a smaller effect on the number of binding sites. 125I-Insulin binding to soluble receptors from HTC-IR and HTC-IR/M-1030 cells pretreated with insulin showed results similar to those obtained in intact cells. In both HTC-IR and HTC-IR/M-1030 cells, insulin enhanced insulin receptor degradation. In HTC-IR/M-1030 cells a 1-h incubation with insulin did not change receptor number and had only a small effect on receptor affinity; also there was no effect of insulin after a 20-h incubation at 15 degrees C. Inhibiting protein synthesis by pretreatment with cycloheximide (100 microM) did not block either the decrease in receptor number or the increase in receptor affinity. Both HTC-IR and HTC-IR/M-1030 cells exhibited a very slow rate of insulin and insulin receptor internalization and no differences were seen in this parameter when HTC-IR cells were compared to HTC-IR/M-1030 cells. These studies indicate, therefore, that in cells expressing kinase-defective insulin receptors, insulin down-regulates insulin receptor number via enhanced receptor degradation, and up-regulates receptor affinity. These effects were time- and temperature-dependent, but not dependent on new protein synthesis, and suggest that activation of tyrosine kinase may not be a prerequisite for certain mechanisms whereby insulin regulates its receptor.  相似文献   

12.
Turkey erythrocytes possess insulin receptors with binding properties very similar to those of mammalian insulin receptors. In the present study, the insulin receptor of the avian erythrocyte has been solubilized in Triton X-100, extensively characterized and partially purified, and its properties compared to those of the membrane-bound receptor.The solubilized insulin receptor has a Stokes radius of 70 Å and an apparent molecular weight of 300 000 in 0.05% Triton. The binding of insulin to the soluble receptor was very similar to the binding observed with the membrane-bound receptor. Thus, binding was markedly temperature dependent for both the soluble and membrane-bound forms, although the kinetics of binding were slower with the soluble receptor. Both forms of the receptor also showed a sharp pH optimum; however, solubilization produced a shift from maximal binding at pH 7.8 to pH 7.3. The soluble receptor also retained insulin analog specificity, ion sensitivity and negative cooperativity. The soluble receptor did not appear to degrade either bound or free insulin.On DEAE-cellulose chromatography the receptor eluted as a single peak. The specific activity of this partially purified preparation was 25–30 pmol/mg protein (about 500-fold enrichment over crude extract and 5-fold over highly purified membranes). Extensive attempts to purify further the receptor by gel filtration, carboxymethyl-cellulose chromatography and affinity chromatography resulted in either a very low yield or only modest enrichment. Purification was also complicated because the receptor was easily denatured; about 40% of the activity was lost after a 90-min exposure to 3 M urea or pH 4.5.  相似文献   

13.
P F Pilch 《Biochemistry》1982,21(22):5638-5644
Insulin binding to rat liver plasma membranes is inhibited in a time- and dose-dependent fashion by prior treatment of membranes with the histidine-specific reagent diethyl pyrocarbonate. If all receptors are occupied by unlabeled hormone during diethyl pyrocarbonate treatment, no inhibition of 125I-labeled insulin binding is observed folowing washout of unlabeled hormone and unreacted reagent. Scatchard analysis of the binding inhibtion due to diethyl pyrocarbonate reveals a loss in receptor number rather than a change in receptor affinity for hormone. Fat cells treated with diethyl pyrocarbonate exhibit a rightward shift in the dose-response relationship for insulin-stimulated glucose oxidation consistent with a loss in receptor number due to the reagent. The pH profile for inhibition of insulin binding by diethyl pyrocarbonate and the partial reversibility of this inhibition by hydroxylamine are consistent with modification of a histidine residue. These results suggest that a histidine residue at or near the receptor binding site is required for formation of the biologically relevant insulin - receptor complex.  相似文献   

14.
The addition of specific bulky hydrophobic groups to the insulin molecule provides it with affinity for circulating serum albumin and enables it to form soluble macromolecular complexes at the site of subcutaneous injection, thereby securing slow absorption of the insulin analogue into the blood stream and prolonging its half-life once there. N-Lithocholic acid acylated insulin [Lys(B29)-lithocholyl des-(B30) human insulin] has been crystallized and the structure determined by X-ray crystallography at 1.6 A resolution to explore the molecular basis of its assembly. The unit cell in the crystal consists of an insulin hexamer containing two zinc ions, with two m-cresol molecules bound at each dimer-dimer interface stabilizing an R(6) conformation. Six covalently bound lithocholyl groups are arranged symmetrically around the outside of the hexamer. These form specific van der Waals and hydrogen-bonding interactions at the interfaces between neighboring hexamers, possibly representing the kinds of interactions which occur in the soluble aggregates at the site of injection. Comparison with an equivalent nonderivatized native insulin hexamer shows that the addition of the lithocholyl group disrupts neither the important conformational features of the insulin molecule nor its hexamer-forming ability. Indeed, binding studies show that the affinity of N-lithocholyl insulin for the human insulin receptor is not significantly diminished.  相似文献   

15.
Structural requirements for signal processing by human placental insulin receptors have been examined. Insulin binding has been found to change the physico-chemical properties of (alpha beta)2 receptors solubilized with Triton X-100, indicating a marked alteration of the form, i.e. size and shape, of the molecular complex. (a) The Stokes radius decreases from about 9.5 nm to 7.9 nm, as determined by PAGE with Triton X-100 in the buffer (Triton X-100/PAGE), and from 9.1 nm to 8.7 nm, as assessed by gel filtration. (b) The sedimentation coefficient s20,w rises from 10.1 S to 11.4 S. Upon dissociation of the receptor-hormone complex, the alterations are reversed. After autophosphorylation of hormone-bound (alpha beta)2-insulin receptors, phosphate incorporation was found for 7.9-nm receptor forms when receptor-insulin complexes were crosslinked with disuccinimide suberate prior to Triton X-100/PAGE. However, phosphate incorporation was demonstrated for the 9.5-nm receptor forms when receptor-insulin complexes were not prevented from dissociation. This strongly indicates that the (alpha beta)2 receptor is autophosphorylated after assuming its 7.9-nm form upon insulin binding. Moreover, the insulin-dependent structural alterations are not affected by autophosphorylation. In contrast to (alpha beta)2 receptors, the diffusion and the sedimentation behaviour of alpha beta receptors, which carry a dormant tyrosine kinase even in the hormone-laden state, has been found to be insensitive to insulin binding. Different molecular properties of alpha beta and (alpha beta)2 receptors have also been detected by hormone binding studies. Insulin binding to (alpha beta)2 and alpha beta receptors differs markedly with respect to pH, ionic strength, and temperature. This might indicate that the structure of the hormone binding domain of alpha beta receptor changes on association into the (alpha beta)2 species. Alternatively, distinct hormone-induced conformational alterations at the molecular level of alpha beta and (alpha beta)2 receptor species may lead to the different binding properties. Our data demonstrate that the (alpha beta)2-insulin receptor undergoes extended conformational alterations upon insulin binding. This capacity for structural changes coincides with the hormone-inducable enhancement of tyrosine autophosphorylation of the 7.9-nm insulin-bound receptor form. In contrast, alpha beta receptors appear to be locked in an inactive nonconvertable state. Thus, interaction between two alpha beta receptor units is required to allow extended conformational alterations, which are assumed to be the triggering event for augmented auto-phosphorylation.  相似文献   

16.
We have previously shown that a monoclonal antibody (MAb) recognizing the human growth hormone (hGH) antigenic domain left exposed after binding to lactogenic receptors enhanced hGH binding probably through allosteric effects on the hormone binding site. Since receptors displaying different specificities would not recognize exactly the same hGH region, we explored whether some of our MAb could affect hGH binding to somatogenic receptors from rabbit liver and to human liver hGH-specific receptors.The effect of MAbAE5, AC8 and F11 on hGH binding was measured by determining the formation of125I-MAb:hGH:receptor complexes using two different experimental approaches. Results from procedure A, which involved the previous binding of the hormone to microsomes before adding125I-MAb, indicated that the hGH domain defined by epitopes AE5, AC8 and F11 is uncovered in the various hormone:receptor complexes.Procedure B was devised to reveal any alteration in the hGH molecule induced by the MAb. In this case preformed125I-MAb:hGH complexes were added to microsomes. Data showed that125I-MAb AE5:hGH complexes bound better to the various receptors than125I-MAb AE5 to hGH:receptor complexes. On the contrary, hGH previously bound to125I-MAb AC8 or125I-MAb F11 was less recognized by the receptors than the free hormone. Furthermore, binding of MAb AE5 or MAb F11 to hGH 20 K (a natural hGH variant lacking residues 32–46) also enhanced its affinity to the various receptors whereas MAb AC8 did not inhibit hGH 20 K binding.Results indicated that MAb recognizing the hGH antigenic area that remains unmasked after binding to different membrane-bound receptors are able to affect hormone binding site. MAb would induce either positive or negative allosteric changes in the hormone region involved in its binding to lactogenic, somatogenic and hGH-specific receptors.  相似文献   

17.
We have shown previously that experimental modifications of the cellular lipid composition of an insulin-sensitive rat hepatoma cell line (Zajdela Hepatoma Culture, ZHC) affect both binding and biological actions of insulin. Discrepancies between insulin binding and actions implied a postbinding defect, responsible for the observed insulin resistance in lipid-treated cells. To elucidate the mechanism for this defect, we have studied insulin binding and insulin receptor kinase activity in partially purified receptor preparations from ZHC cells grown either in normal medium or in medium supplemented with linoleic acid or 25-hydroxycholesterol. Insulin binding to the lectin-purified insulin receptor showed only a small alteration in receptor affinity for the preparations from lipid-treated cells. Insulin-stimulated autophosphorylation of the beta-subunit of the insulin receptor, as well as insulin-induced phosphorylation of the artificial substrate poly(Glu,Tyr)4:1, was significantly decreased in the preparations from lipid-modified cells. Although differences in basal levels were observed, the magnitude of the insulin-stimulated kinase activity was significantly decreased in receptor preparations from lipid-treated cells. These findings indicate that experimental modification of the lipids of cultured hepatoma cells can produce in insulin receptor kinase activity changes that are proportional to the reduced insulin action observed in these cells.  相似文献   

18.
Our laboratory has previously reported that antiestrogen binding to molybdate-stabilized non-transformed estrogen receptor results in a larger form of the receptor in 0.3 M KCl when compared with estrogen bound receptor. Estradiol promoted the formation of monomers in the presence of 0.3 M KCl whereas antiestrogen appeared to promote dimer formation. We have extended these studies examining the rabbit uterine salt-transformed estrogen receptor partially purified by DEAE-cellulose chromatography. We previously demonstrated that estrogen receptor prepared in this way bound to different sites on partially deproteinized chromatin subfractions or reconstituted chromosomal protein/DNA fractions when the receptor was complexed with estrogen vs antiestrogen. Analysis of these receptor preparations indicated that DEAE-cellulose step-elution resulted in a peak fraction which sedimented as a single 5.9S peak in 5-20% sucrose density gradients containing 0.3 M KCl for receptor bound by the antiestrogens H1285 and trans-hydroxytamoxifen. However, receptor bound by estradiol sedimented as 4.5S. These receptor complexes bound DNA-cellulose indicating that these partially purified receptors were transformed. DEAE rechromatography or agarose gel filtration of the partially purified antiestrogen-receptor complexes resulted in significant dissociation of the larger complex into monomers. Incubations of 5.9S antiestrogen-receptor complexes with antibodies against nontransformed steroid receptor-associated proteins (the 59 and 90 kDa proteins) did not result in the interaction of this larger antiestrogen-receptor complex with these antibodies (obtained from L. E. Faber and D. O. Toft, respectively). Our results support the concept that antiestrogen binding induces a different receptor conformation which could affect monomer-dimer equilibrium, thus rendering the antiestrogen-receptor complex incapable of inducing complete estrogenic responses in target tissues.  相似文献   

19.
The role of the surrounding membrane structure on the binding characteristics of the insulin receptor was studied by using several digestive enzymes. The effects observed with particulate membrane preparations are compared with those from soluble receptor preparations. beta-Galactosidase and neuraminidase had no effect on insulin binding to either particulate or soluble receptors from human placentae. Exposure to 2 units of phospholipase C/ml increased insulin binding to particulate membranes, but was without effect on the soluble receptor preparation. The increase in binding to particulate membranes was shown to be due to an increase in apparent receptor number. After 5 min exposure to 500 microgram of trypsin/ml there was an increase in insulin binding to the particulate membrane fraction, owing to an increase in receptor affinity. After 15 min exposure to this amount of trypsin, binding decreased, owing to a progressive decrease in receptor availability. In contrast, this concentration of trypsin had no effect on the solubilized receptor preparation. Because of the differential effects of phospholipase C and trypsin on the particulate compared with the solubilized receptor preparations, it is concluded that the effects of these enzymes were due to an effect on the surrounding membrane structure. Changes in receptor configuration due to alterations within the adjoining membrane provide a potential mechanism for mediating short-term alterations in receptor function.  相似文献   

20.
In this study, we report a procedure for producing antisera that block the binding of 125I-insulin to its receptor. After 2 injections with intact IM-9 cultured human lymphocytes, the antisera from 8 of 17 BalbC mice inhibited the binding of 125I-insulin to its receptor on IM-9 cells by 50% or greater. One antiserum at dilutions of 1:200 and 1:50 inhibited the binding of 125I-insulin by 50% and 80%, respectively. Four lines of evidence indicated that the inhibition of 125I-insulin binding by this antiserum was due to a specific immunoglobulin directed against the insulin receptor. First, removal of the immunoglobulin fraction of the antiserum resulted in a complete loss of its inhibitory activity. Second, the antiserum inhibited the binding of 125I-insulin to its receptor on both human cultured lymphocytes and human placenta particles. Third, the antisera bound solubilized insulin-receptor complexes. Finally, the antiserum did not inhibit the binding of 125I-human growth hormone to its receptor on IM-9 lymphocytes. These studies demonstrate therefore, a simple method for producing antibodies that block the binding of 125I-insulin to the human insulin receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号