首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A new Ru(II) complex of [Ru(bpy)(2)(Hpip)](2+) {bpy = 2,2'bipyridine; Hppip = 2-(4-(pyridin-2-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} has been synthesized by grafting of 2-pyridyl to parent complex [Ru(bpy)(2)(Hpip)](2+) {Hppip = 2-(4-phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline}. The acid-base properties of [Ru(bpy)(2)(Hpip)](2+) studied by UV-visible and luminescence spectrophotometric pH titrations, revealed off-on-off luminescence switching of [Ru(bpy)(2)(Hpip)](2+) that was driven by the protonation/deprotonation of the imidazolyl and the pyridyl moieties. The complex was demonstrated to be a DNA intercalator with an intrinsic DNA binding constant of (5.56 ± 0.2) x 10(5) M-1 in buffered 50 mM NaCl, as evidenced by UV-visible and luminescence titrations, reverse salt effect, DNA competitive binding with ethidium bromide, steady-state emission quenching by [Fe(CN)6]4-, DNA melting experiments and viscosity measurements. The density functional theory method was also used to calculate geometric/electronic structures of the complex in an effort to understand the DNA binding properties. All the studies indicated that the introduction of 2-pyridyl onto Hpip ligand is more favorable for extension of conjugate plane of the main ligand than that of phenyl, and for greatly enhanced ct-DNA binding affinity accordingly.  相似文献   

2.
Large enhancement in the luminescence intensity of the Delta- and Lambda-Ru(phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) complexes upon their association with single stranded poly(dA) and poly(dT) is reported in this work. As the mixing ratio ([[Ru(phen)(2)DPPZ](2+)]/[DNA base]) increases, the luminescence intensity increase in a sigmoidal manner, indicating that the enhancement involves some cooperativity. At a high mixing ratio, the luminescence properties are affected by the nature of the DNA bases and not by the absolute configuration of the [Ru(phen)(2)DPPZ](2+) complex, indicating that the single stranded poly(dA) and poly(dT) do not recognize the configuration of the metal complex. In the case of the Lambda-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex, the manner of the enhancement is somewhat different from the other Ru(II) complex-polynucelotide combinations: the luminescence intensity reached a maximum at an intermediate mixing ratio of 0.32, and gradually decreased as the mixing ratio increased. In contrast to other complexes at high mixing ratios, an upward bending curve was found in the Stern-Volmer plot, which indicates that the micro-environment of the Lambda-[Ru(phen)(2)DPPZ](2+) is heterogeneous. In the Delta-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex case, formation of this highly luminescent species at an intermediate mixing ratio is far less effective.  相似文献   

3.
Ni Y  Lin D  Kokot S 《Analytical biochemistry》2006,352(2):231-242
Constant wavelength synchronous fluorescence spectroscopy (CW-SFS), UV-visible absorption spectroscopy, and cyclic and differential pulse voltammetry were applied to investigate the competitive interaction of DNA with the bis(1,10-phenanthroline)copper(II) complex cation ([Cu(phen)(2)](2+)) and a fluorescence probe, neutral red dye (NR), in a tris-hydrogen chloride buffer (pH 7.4). The results show that both the [Cu(phen)(2)](2+)and the NR molecules can intercalate competitively into the DNA double-helix structure. The cyclic voltammetry method showed that both anodic and cathodic currents of [Cu(phen)(2)](2+) decreased on addition of the DNA and the intercalated [Cu(phen)(2)](2+)-DNA complex formed (beta = (4.14 +/- 0.24) x 10(3)). CW-SFS measurements were facilitated by the use of the three-way resolution of the CW-SFS for NR, [Cu(phen)(2)](2+), and NR-DNA. The important constant wavelength (CW) interval, Deltalambda, was shown to vary considerably when optimized (135, 58, and 98 nm for NR, NR-DNA, and [Cu(phen)(2)](2+), respectively). This approach clearly avoided the errors that otherwise would have arisen from the common assumption that Deltalambda is constant. Furthermore, a chemometrics approach, parallel factor analysis (PARAFAC), was applied to resolve the measured three-way CW-SFS data, and the results provided simultaneously the concentration information for the three reaction components, NR, [Cu(phen)(2)](2+), and NR-DNA, for the system at each equilibrium point. The PARAFAC analysis indicated that the intercalation of the [Cu(phen)(2)](2+) molecule into the DNA proceeds by exchanging with the NR probe and can be attributed to two parallel reactions. Comprehensive information was readily obtained; the replacement of the intercalated NR commenced immediately on introduction of [Cu(phen)(2)](2+), approximately 50% of NR was replaced by [Cu(phen)(2)](2+) at a concentration of 0.45 x 10(-5) mol L(-1), and nearly all of the NR was replaced at a [Cu(phen)(2)](2+) concentration of 2.50 x 10(-5) mol L(-1). This work has the potential to improve extraction of information from the fluorescence intercalator displacement (FID) assay.  相似文献   

4.
The processes that are photoinduced by [Ru(bpz)(3)](2+) (bpz = 2,2'-bipyrazyl) in the presence of Cu/Zn superoxide dismutase (Cu/Zn SOD) are investigated by laser flash photolysis and electron paramagnetic resonance (EPR) spectroscopy; they are compared to those of the system [Ru(bpy)(3)(2+)-Cu/Zn SOD]. Although the mechanism is complicated, primary and secondary reactions can be evidenced. First, the excited [Ru(bpz)(3)](2+) complex is quenched reductively by Cu/Zn SOD with the production of a reduced complex and an oxidized enzyme. The oxidation site of Cu/Zn SOD is proposed to correspond to amino acids located on the surface of the protein. Afterward and only when this reductive electron transfer to the excited complex has produced enough oxidized protein, another electron-transfer process can be evidenced. In this case, however, the charge-transfer process takes place in the other direction, i.e., from the excited complex to the Cu(II) center of the SOD with the formation of Ru(III) and Cu(I) species. This proposed mechanism is supported by the fact that [Ru(bpy)(3)](2+), which is less photo-oxidizing than [Ru(bpz)(3)](2+), exhibits no photoreaction with Cu/Zn SOD. Because Ru(III) species are generated as intermediates with [Ru(bpz)(3)](2+), they are proposed to be responsible for the enhancement of [poly(dG-dC)](2) and [poly(dA-dT)](2) oxidation observed when Cu/Zn SOD is added to the [Ru(bpz)(3)](2+)-DNA system.  相似文献   

5.
Guo QY  Chen MJ  Li Q  Xu J  Li H  Xu ZH 《DNA and cell biology》2011,30(5):329-336
A novel, yet effective method for identifying DNA-binding modes of [Ru(bpy)(2)dmt](2+) (where bpy?=?2,2'-bipyridine and dmt?=?2,3-dimethyl-1,4,8,9-tetra-aza-triphenylene) on an indium tin oxide electrode has been successfully developed by introducing Cu(2+) ion and ethylenediaminetetraacetic acid. The results from emission spectra and fluorescence microscopic images suggested that [Ru(bpy)(2)dmt](2+) not only associates with Cu(2+) ion in both the absence and presence of DNA but also shows strong affinity with DNA in the presence of Cu(2+). Evidence for the strong binding of [Ru(bpy)(2)dmt](2+) to DNA was determined from the interface studies using electrochemical methods. The present study suggests that a combination of photoluminescence measurement with electrochemical methods identifies the DNA-binding behavior of luminescent molecules with redox activities. [Ru(bpy)(2)dmt](2+) binds to DNA via an intercalative mode.  相似文献   

6.
The interaction between hexakis(imidazole) manganese(II) terephthalate ([Mn(Im)(6)](teph).4H(2)O) and salmon sperm DNA in 0.2M pH 2.30 Britton-Robinson buffer solution was studied by fluorescence spectroscopy and cyclic voltammetry. Increasing fluorescence was observed for [Mn(Im)(6)](2+) with DNA addition, while quenching fluorescence phenomenon appeared for EB-DNA system when [Mn(Im)(6)](2+) was added. There were a couple quasi-reversible redox peaks of [Mn(Im)(6)](2+) from the cyclic voltammogram on the glassy carbon electrode. The peak current of [Mn(Im)(6)](2+) decreased with positive shift of the formal potential in the presence of DNA compared with that in the absence of DNA. All the experimental results indicate that [Mn(Im)(6)](2+) can bind to DNA mainly by intercalative binding mode. The binding ratio of the DNA-[Mn(Im)(6)](2+) association complex is calculated to be 1:1 and the binding constant is 4.44x10(3) M(-1). By using [Mn(Im)(6)](teph).4H(2)O as the electrochemical hybridization indicator, the DNA electrochemical sensor was prepared by covalent interaction and the selectivity of ssDNA modified electrode were described. The results demonstrate the use of electrochemical DNA biosensor in the determination of complementary ssDNA.  相似文献   

7.
DNA-binding properties of novel copper(II) complex [Cu(l-Phe)(TATP)(H(2)O)](+), where L-Phe=L-phenylalaninate and TATP=1,4,8,9-tetra-aza-triphenylene are investigated using electronic absorption spectroscopy, fluorescence spectroscopy, voltammetry and viscosity measurement. It is found that the presence of calf thymus DNA results in a hypochromism and red shift in the electronic absorption, a quenching effect on fluorescence nature of ethidium bromide-DNA system, an enhanced response on voltammograms of [Co(phen)(3)](3+/2+)-DNA system, and an obvious change in viscosity of DNA. From absorption titration, fluorescence analysis and voltammetric measurement, the binding constant of the complex with DNA is calculated. The latter two methods reveal the stronger binding of [Cu(l-Phe)(TATP)(H(2)O)](+) complex to double strand DNA by the moderate intercalation than [Co(phen)(3)](3+). Such a binding induces the cleavage of plasmid pBR322 DNA in the presence of H(2)O(2).  相似文献   

8.
Absorption spectroscopy, fluorescence spectroscopy and viscosity measurements have been used to characterize the DNA binding of [Ru(tpy)(dppt)](2+) (tpy=2,2':6',2"-terpyridine, dppt=3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine), [Ru(tpy)(pta)](2+) (pta=3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene) and [Ru(tpy)(ptp)](2+) (ptp=3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]-phenanthrene). The results indicate that [Ru(tpy)(pta)](2+) and [Ru(tpy)(ptp)](2+) bind with CT-DNA in an intercalative mode, while [Ru(tpy)(dppt)](2+) binds with DNA by partial intercalation. The ligand planarity of the complex has a significant effect on DNA binding affinity increases in the order [Ru(tpy)(dppt)](2+)<[Ru(tpy)(pta)](2+)<[Ru(tpy)(ptp)](2+).  相似文献   

9.
The luminescence intensity of the Delta- and Lambda-enantiomer of [Ru(phen)2DPPZ]2+ ([Ru(phenanthroline)2 dipyrido[3,2-a:2',3'-c]phenazine]2+) complex enhanced upon binding to double stranded DNA, which has been known as "light switch effect". The enhancement of the luminescence required the intercalation of the large ligand between DNA base pairs. In this study, we report the enhancement in the luminescence intensity when the metal complexes bind to single stranded oligonucleotides, indicating that the "light switch effect" does not require intercalation of the large DPPZ ligand. Oligonucleotides may provide a hydrophobic cavity for the [Ru(phen)2DPPZ]2+ complex to prevent the quenching by the water molecule. In the cavity, the metal complex is in contact with DNA bases as is evidenced by the observation that the excited energy of the DNA bases transfer to the bound metal complex. However, the contact of the metal complex with DNA bases is different from the stacking of DPPZ in the intercalation pocket. In addition to the normal two luminescence lifetimes, a short lifetime in the range of 1-2 ns was found for both the delta- and lambda-enantiomer of [Ru(phen)2DPPZ]2+ when complexed with single stranded oligonucleotides, which may be assigned to the metal complex that is outside of the cavity, interacting with phosphate groups of DNA.  相似文献   

10.
Ruthenium(II) complexes have rich photophysical attributes, which enable novel design of responsive luminescence probes to selectively quantify biochemical analytes. In this work, we developed a systematic series of Ru(II)-bipyrindine complex derivatives, [Ru(bpy)(3-n)(DNP-bpy)(n)](PF(6))(2) (n = 1, 2, 3; bpy, 2,2'-bipyridine; DNP-bpy, 4-(4-(2,4-dinitrophenoxy)phenyl)-2,2'-bipyridine), as luminescent probes for highly selective and sensitive detection of thiophenol in aqueous solutions. The specific reaction between the probes and thiophenol triggers the cleavage of the electron acceptor group, 2,4-dinitrophenyl, eliminating the photoinduced electron transfer (PET) process, so that the luminescence of on-state complexes, [Ru(bpy)(3-n)(HP-bpy)(n)](2+) (n = 1, 2, 3; HP-bpy, 4-(4-hydroxyphenyl)-2,2'-bipyridine), is turned on. We found that the complex [Ru(bpy)(DNP-bpy)(2)](2+) remarkably enhanced the on-to-off contrast ratio compared to the other two (37.8 compared to 21 and 18.7). This reveals a new strategy to obtain the best Ru(II) complex luminescence probe via the most asymmetric structure. Moreover, we demonstrated the practical utility of the complex as a cell-membrane permeable probe for quantitative luminescence imaging of the dynamic intracellular process of thiophenol in living cells. The results suggest that the new probe could be a very useful tool for luminescence imaging analysis of the toxic thiophenol in intact cells.  相似文献   

11.
The substituted tris(bipyridine)ruthenium(II) complexes {[Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) [where bpy=2,2'-bipyridine and bbob=bis(benzoxazol-2-yl)-2,2'-bipyridine] have been prepared and compared to the previously studied complex [Ru(bpy)(2)(4,4'-bbtb)](2+) [where bbtb=bis(benzothiazol-2-yl)-2,2'-bipyridine]. From the UV/VIS titration studies, Delta-[Ru(bpy)(2)(4,4'-bbob)](2+) displays a stronger association than the Lambda-isomer with calf-thymus DNA (ct-DNA). For [Ru(bpy)(2)(5,5'-bbob)](2+), there appears to be minimal interaction with ct-DNA. The results of fluorescence titration studies suggest that [Ru(bpy)(2)(4,4'-bbob)](2+) gives an increase in emission intensity with increasing ct-DNA concentrations, with an enantiopreference for the Delta isomer, confirmed by membrane dialysis studies. The fluorescent intercalation displacement studies revealed that [Ru(bpy)(2)(4,4'-bbob)](2+) and [Ru(bpy)(2)(5,5'-bbob)](2+) display a preference for more open DNA structures such as bulge and hairpin sequences. While Lambda-[Ru(bpy)(2)(4,4'-bbtb)](2+) has shown the most significant affinity for all the oligonucleotides sequences screened in previous studies, it is the Delta isomer of the comparable benzoxazole ruthenium(II) complex (Delta-[Ru(bpy)(2)(4,4'-bbob)](2+)) that preferentially binds to DNA.  相似文献   

12.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

13.
Jackson BA  Barton JK 《Biochemistry》2000,39(20):6176-6182
5,6-chrysenequinone diimine (chrysi) complexes of rhodium(III) have been shown to be versatile and specific recognition agents for mismatched base pairs in DNA. The design of these compounds was based on the hypothesis that the sterically expansive chrysi ligand, which should be too wide to readily intercalate into B-DNA, would bind preferentially in the destabilized regions of the DNA helix near base mismatches. In this work, this recognition hypothesis is comprehensively explored. Comparison of the recognition patterns of the complex [Rh(bpy)(2)(chrysi)](3+) with a nonsterically demanding analogue, [Rh(bpy)(2)(phi)](3+) (phi = 9,10-phenanthrenequinone diimine), demonstrates that the chrysi ligand does indeed disfavor binding to B-DNA and generate mismatch selectivity. Examination of mismatch recognition by [Rh(bpy)(2)(chrysi)](3+) in both constant and variable sequence contexts using photocleavage assays indicates that the recognition of base mismatches is influenced by the amount that a mismatch thermodynamically destabilizes the DNA helix. Thermodynamic binding constants for the rhodium complex at a range of mismatch sites have been determined by quantitative photocleavage titration and yield values which vary from 1 x 10(6) to 20 x 10(6) M(-)(1). These mismatch-specific binding affinities correlate with independent measurements of thermodynamic destabilization, supporting the hypothesis that helix destabilization is a factor determining the binding affinity of the metal complex for the mismatched site. Although not the only factor involved in the binding of [Rh(bpy)(2)(chrysi)](3+) to mismatch sites, a model is proposed where helix destabilization acts as the "door" which permits access of the sterically demanding intercalator to the base stack.  相似文献   

14.
The interactions of five bis(bipyridyl) Ru(II) complexes of pteridinyl-phenanthroline ligands with calf thymus DNA have been studied. The pteridinyl extensions were selected to provide hydrogen-bonding patterns complementary to the purine and pyrimidine bases of DNA and RNA. The study includes three new complexes [Ru(bpy)(2)(L-pterin)](2+), [Ru(bpy)(2)(L-amino)](2+), and [Ru(bpy)(2)(L-diamino)](2+) (bpy is 2,2'-bipyridine and L-pterin, L-amino, and L-diamino are phenanthroline fused to pterin, 4-aminopteridine, and 2,4-diaminopteridine), two previously reported complexes [Ru(bpy)(2)(L-allox)](2+) and [Ru(bpy)(2)(L-Me(2)allox)](2+) (L-allox and L-Me(2)allox are phenanthroline fused to alloxazine and 1,3-dimethyalloxazine), the well-known DNA intercalator [Ru(bpy)(2)(dppz)](2+) (dppz is dipyridophenazine), and the negative control [Ru(bpy)(3)](2+). Reported are the syntheses of the three new Ru-pteridinyl complexes and the results of calf thymus DNA binding experiments as probed by absorption and fluorescence spectroscopy, viscometry, and thermal denaturation titrations. All Ru-pteridine complexes bind to DNA via an intercalative mode of comparable strength. Two of these four complexes-[Ru(bpy)(2)(L-pterin)](2+) and [Ru(bpy)(2)(L-allox)](2+)-exhibit biphasic DNA melting curves interpreted as reflecting exceptionally stable surface binding. Three new complexes-[Ru(bpy)(2)(L-diamino)](2+), [Ru(bpy)(2)(L-amino)](2) and [Ru(bpy)(2)(L-pterin)](2+)-behave as DNA molecular "light switches."  相似文献   

15.
The hydroxo-bridged dinuclear copper (II)/phen complex [Cu(2)(phen)(2)(OH)(2)(H(2)O)(2)][Cu(2)(phen)(2)(OH)(2)Cl(2)]Cl(2).6H(2)O (phen=1,10-phenanthroline) has been prepared and characterized by single crystal X-ray diffraction. The coordinated area of the complex shows two distorted [CuN(2)O(2)O(w)] and [CuN(2)O(2)Cl] square-pyramidal and one strictly planar configuration CuO(2)Cu involving two O atoms of hydroxo-bridged, Cu(2+) cations, N atoms of two phen ligands and disorder solvate water and chlorine anions. In the presence of H(2)O(2), the complex of mono(1,10-phenanthroline)copper exhibits higher activity as a nuclease than bis(1,10-phenanthroline)copper.  相似文献   

16.
The binding mode of Delta- and Lambda-[Ru(1,10-phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) to DNA in the presence of 4',6-diamidino-2-phenylindole (DAPI) at a low and high [DAPI]/[DNA base] ratio (0.02 and 0.20, respectively) was investigated using electric absorption and circular dichroism spectroscopy. The spectral properties of both the Delta- and Lambda-[Ru(phen)(2)DPPZ](2+) were not altered in the presence of DAPI disregarding the [DAPI]/[DNA] ratio, suggesting that the presence of DAPI in the minor groove of DNA does not affect the binding mode of the [Ru(phen)(2)DPPZ](2+) complex to DNA. The transferring excited energy of DAPI to both Delta- and Lambda-[Ru(phen)(2)DPPZ](2+) occurs through F?rster type resonance when they both spontaneously bound to DNA. At a high [DAPI]/[DNA] ratios, an upward bending curve in the Stern-Volmer plot, and a shortening the DAPI fluorescence decay time with increasing [Ru(phen)(2)DPPZ](2+) concentration were found. These results indicate that the quenching of the DAPI's fluorescence occurs through both the static and dynamic mechanisms. In contrast, the quenching mechanism at a low [DAPI]/[DNA] ratios was found to be purely static. The static quenching constant decreased linearly with respect to the [DAPI]/[DNA] ratio. Decrease in quenching efficiency can be explained by the association constant of [Ru(phen)(2)DPPZ](2+) to DNA while being within a quenchable distance from a DAPI molecule.  相似文献   

17.
A binuclear complex [(phen)Cu(mu-bipp)Cu(phen)](ClO(4))(4), where phen=1,10-phenanthroline and bipp=2,9-bis(2-imidazo[4,5-f][1,10]phenanthroline)-1,10-phenanthroline, has been synthesized and its interaction with calf-thymus DNA in the buffer containing 5mM Tris and 50mM NaCl has been studied by means of electronic absorption titration, luminescence titration and viscometric measurements. The absorbance of the complex in the range of 320-400 nm, which is mainly based on bipp showed no obvious change upon addition of DNA, while the peak at 270 nm, which is determined by both phen and bipp decreased by up to 18%. The emission band of the complex around 360 nm decreased remarkably in presence of DNA. The emission quenching of this complex by [Fe(CN)(6)](4-) was depressed greatly when bound to DNA. The relative viscosity of DNA was increased by this complex more significantly than a bipp directed intercalating reagent. These results suggest that this complex binds to calf thymus DNA by intercalation of the two phenanthrolinecopper terminals. The apparent intrinsic binding constant of the complexes with DNA was 1.6 x 10(4)M(-1) as determined by UV-visible titration.  相似文献   

18.
A novel asymmetric bidentate ruthenium (II) complex, [Ru(bpy)(2)(PYNI)](2+) (bpy=2,2'-bipyridine, PYNI=2-(2'-pyridyl)naphthoimidazole), has been synthesized and characterized by elemental analysis, ES-MS (electrospray mass spectra) and (1)H NMR. The electrochemical behaviors of this complex were studied by cyclic voltammetry. DNA interaction studies suggest that [Ru(bpy)(2)(PYNI)](2+) binds to calf thymus DNA (CT-DNA) in an intercalative mode. Interestingly, this new Ru(II) complex has also been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II upon irradiation.  相似文献   

19.
The compound [Cu(2)(II)(D(1))(H(2)O)(2)](ClO(4))(4).2H(2)O [D(1)=binucleating ligand with tris(2-pyridylmethyl)amine (TMPA) moieties linked in the 5-pyridyl position by a -CH(2)CH(2)- bridge] mediated efficient oxidative cleavage of pBR322 plasmid DNA under reducing conditions. A mononuclear analogue, [Cu(TMPA)(H(2)O)](ClO(4))(2), was less effective at linearizing supercoiled (Form I) plasmid DNA as compared to the binuclear complex. A new method for quenching the copper-dependent reactions has been developed to avoid plasmid scission by the binuclear complex and the standard gel loading buffer. EDTA was not sufficient for retarding copper reaction, but diethyldithiocarbamic acid was capable of inhibiting all reactivity. Investigation of oxidative cleavage of double-helical oligonucleotides by [Cu(2)(II)(D(1))(H(2)O)(2)](ClO(4))(4) confirmed the enhanced reactivity of the binuclear over the mononuclear complex and provided mechanistic insights into the nature of the reaction. Cleavage of DNA required both the binuclear complex and a reductant and likely proceeded through an O(2)-derived intermediate that does not include a diffusible hydroxyl radical. The greater efficiency of the binuclear complex relative to the mononuclear analogue is consistent with their relative abilities to activate dioxygen.  相似文献   

20.
A series of mixed-ligand ruthenium(II) complexes of the type [Ru(en)(2)bpy](2+) (bpy=2,2-bipyridine; 1), [Ru(en)(2)phen](2+) (phen=1,10-phenantroline; 2), [Ru(en)(2)IP](2+) (IP=imidazo[4,5-f][1,10]phenanthroline; 3), and [Ru(en)(2)PIP](2+) (PIP=2-phenylimidazo[4,5-f][1,10]phenanthroline; 4) have been isolated and characterized by UV/VIS, IR, and (1)H-NMR spectral methods. The binding of the complexes with calf thymus DNA has been investigated by absorption, emission spectroscopy, viscosity measurements, DNA melting, and DNA photo-cleavage. The spectroscopic studies together with viscosity measurements and DNA melting studies support that complexes 1 and 2 bind to CT DNA (=calf thymus DNA) by groove mode. Complex 2 binds more avidly to CT DNA than complex 1, complexes 3 and 4 bind to CT DNA by intercalation mode, 4 binds more avidly to CT DNA than 3. Noticeably, the four complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号