首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Conceptus (embryo and associated extraembryonic membranes) implantation and development require a reciprocal biochemical and physical interactions between the extraembryonic membranes and the endometrium. However, the enzymatic antioxidative pathways controlling reactive oxygen species production at the endometrial-extraembryonic membrane interface early in pregnancy are not known. We aimed therefore to determine the content of malondialdehyde, as biomarkers of lipid peroxidation, and the activities of the major antioxidant enzymes, copper-zinc containing and manganese containing superoxide dismutases, catalase and glutathione peroxidase, in sheep extraembryonic membranes, caruncular and intercaruncular endometrium zones sampled at specific stages of pregnancy corresponding to the conceptus implantation (day 16) and the early post-implantation period (day 21). Malondialdehyde content in caruncular, intercaruncular and extraembryonic tissues was not different between stages of the pregnancy. Extraembryonic membranes demonstrated increased manganese containing superoxide dismutase and glutathione peroxidase activities, whereas catalase activity in these tissues decreased from day 16 to day 21. Caruncular tissues demonstrated increased manganese containing superoxide dismutase activity from day 16 to day 21. Intercaruncular tissues demonstrated increased copper-zinc containing superoxide dismutase, manganese containing superoxide dismutase and catalase activities from day 16 to day 21. The ovine extraembryonic membranes exhibit dynamic changes in enzymatic antioxidative pathways different from those of endometrial tissues during the transition from implantation to post-implantation period. This biochemical data provides novel insights into the developmental changes in antioxidative pathways of extraembryonic membranes and endometrium during early conceptus development.  相似文献   

2.
Reactive oxygen species are implicated in cancer development and antioxidants in general and superoxide dismutases and superoxide dismutase mimetic in particular, and they inhibit malignant transformation. We examinate the effects of an isolated manganese superoxide dismutase from a medicinal plant Allium sativum. The protein was prepared by a serial of chromatographic techniques: gel filtration and diethylaminoethyl ions exchanger. The enzyme has a specific activity equal to 55 U/mg. Two tumoral cell lines, porcine endothelial cells and mouse melanoma cells were exposed to garlic superoxide dismutase. The exogenous manganese superoxide dismutase is able to modify the intracellular level of reactive oxygen species by eliminating superoxide anion and producing hydrogen peroxide. The cell viability of the two lines was not significantly affected but the cell multiplication was arrested. This effect obtained in the presence of manganese superoxide dismutase correlates with the activation and modulation of phospho‐extracellular signal‐regulated kinases proteins, implicated in the control of several biological processes including cell proliferation. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
The enzymes catalase and superoxide dismutase play major roles in protecting phytopathogenic bacteria from oxidative stress. In Xanthomonas species, these enzymes are regulated by both growth phase and oxygen tension. The highest enzyme levels were detected within 1 h of growth. Continued growth resulted in a decline of both enzyme activities. High oxygen tension was an inducing signal for both enzyme activities. An 80,000-Da monofunctional catalase and a manganese superoxide dismutase were the major forms of the enzymes detected at different stages of growth. The unusual regulatory patterns are common among several Xanthomonas strains tested and may be advantageous to Xanthomonas species during the initial stage of plant-microorganism interactions.  相似文献   

4.
Reactive oxygen species are toxic to cells but they may also have active roles in transducing apoptotic events. To study the role of reactive oxygen species in growth factor depletion induced apoptosis of human primary CD4+ T cells, we used a synthetic manganese porphyrin superoxide dismutase mimetic to detoxify superoxide anions formed during apoptosis. Apoptosis of primary CD4+ T cells was characterized by generation of superoxide anions, plasma membrane phosphatidyl-serine translocation, loss of mitochondrial membrane potential, activation of caspase 3, condensation of chromatin, as well as DNA degradation. The detoxification of superoxide anions did not influence plasma membrane phosphatidyl-serine translocation, or chromatin condensation, and only marginally inhibited the loss of mitochondrial membrane potential and the formation of DNA strand breaks. In contrast, the detoxification of superoxide anions significantly reduced caspase 3 activity and almost completely inhibited the apoptotic decrease in total cellular DNA content as measured by propidium iodide staining. Our results indicate that reactive oxygen anions induce signals leading to efficient DNA degradation after the initial formation of DNA strand breaks. Thus, reactive oxygen anions have active roles in signaling that lead to the apoptotic events.  相似文献   

5.
Recent studies of Mn(2+) transport mutants indicate that manganese is essential for unstressed growth in some bacterial species, but is required primarily for induced stress responses in others. A Bradyrhizobium japonicum mutant defective in the high-affinity Mn(2+) transporter gene mntH has a severe growth phenotype under manganese limitation, suggesting a requirement for the metal under unstressed growth. Here, we found that activities of superoxide dismutase and the glycolytic enzyme pyruvate kinase were deficient in an mntH strain grown under manganese limitation. We identified pykM as the only pyruvate kinase-encoding gene based on deficiency in activity of a pykM mutant, rescue of the growth phenotype with pyruvate, and pyruvate kinase activity of purified recombinant PykM. PykM is unusual in that it required Mn(2+) rather than Mg(2+) for high activity, and that neither fructose-1,6-bisphosphate nor AMP was a positive allosteric effector. The mntH-dependent superoxide dismutase is encoded by sodM, the only expressed superoxide dismutase-encoding gene under unstressed growth conditions. An mntH mutant grew more slowly on pyruvate under manganese-limited conditions than did a pykM sodM double mutant, implying additional manganese-dependent processes. The findings implicate roles for manganese in key steps in unstressed oxidative metabolism in B. japonicum.  相似文献   

6.
The role of transition metal ions in atherogenesis is controversial; they may be involved in hydroxyl radical generation and can also catalyze the reactive oxygen species neutralization reaction as cofactors of antioxidant enzymes. Using EPR spectroscopy, we revealed that 70% of aorta specimens with atherosclerotic lesions possessed superoxide dismutase activity, 100% of the specimens initiated Fenton reaction and demonstrated the presence of manganese paramagnetic centers. The sodA gene encoding manganese-dependent bacterial superoxide dismutase was not found in the samples of atherosclerotic plaques by PCR using degenerate primers. The data obtained indicate prospects of manganese analysis as a marker element in the express diagnostics of atherosclerosis.  相似文献   

7.
The human promyelocytic leukemia cell line HL-60 undergoes induced myeloid differentiation, with acquisition of most polymorphonuclear leukocyte (PMN) functions, including generation of toxic oxygen species. We examined the concurrent changes in the cellular detoxifying defenses against superoxide and H2O2: superoxide dismutase, catalase, and the glutathione cycle. During induced differentiation, total superoxide dismutase activity declined to a level slightly more than 2-fold that of PMN, largely due to a decrease in Mn-superoxide dismutase; CuZn-superoxide dismutase showed virtually no change. Catalase activity declined only slightly (but significantly) to a level 1.3 that of PMN. GSH peroxidase activity fell and then rose back to its original level, remaining throughout differentiation more than 10-fold higher than activity in PMN. GSSG reductase activity declined to a level of 73% that of uninduced cells but twice that of PMN. GSH and GSSG contents both decreased, reaching equivalence to those of PMN. Concurrently, the ability of the cells to generate H2O2 increased 11-fold, a change similar to that previously reported for superoxide production. Thus, there is a paradoxical inverse relationship between the development of active oxygen generation and scavenging systems during myeloid differentiation in HL-60 cells.  相似文献   

8.
1. A polarographic assay of superoxide (O2--) dismutase (EC 1.15.1.1) activity is described, in which the ability of the enzyme to inhibit O2---dependent sulphite oxidation, initiated by xanthine oxidase activity, is measured. The assay was used in a study of the intracellular distribution of superoxide dismutase in rat liver. Both cyanide-sensitive cupro-zinc dismutase (92% of the total activity) and cyanide-insensitive mangano-dismutase (8%) were measured. 2. Rat liver homogenates contained both particulate (16%y and soluble (84%) dismutase activity. The particulate activity contained both types of dismutase, whereas nearly all the soluble dismutase was a cupro-zinc enzymes. The distribution pattern of mangano-dismutase was similar to that of cytochrome oxidase and glutamate dehydrogenase, indicating that the enzyme was probably present exclusively in the mitochondria. 3. Superoxide dismutase activity in the heavy-mitochondrial (M) fraction was latent and was activated severalfold and largely solubilized by sonication. Treatment of the M fraction with digitonin or a hypo-osmotic suspending medium indicated that most of the cupro-zinc dismutase was located in the mitochondrial intermembrane space, whereas the mangano-enzyme was located in the inner-membrane and matrix space. 4. A small amount of dismutase activity appeared to be present in the nuclei and microsomal fraction, but little or no activity in the lysosomes or peroxisomes. 5. The results are discussed in relation to the intracellular location of known O2---generating enzymes, the possible role of superoxide dismutase activity in intracellular H2O2 formation, and to current views on the physiological function of the enzyme.  相似文献   

9.
The effect of ischemia-reperfusion on activity, protein and m-RNA levels of catalase, copper-zinc and manganese containing superoxide dismutases and glutathione peroxidase, the enzymes that are involved in free radical detoxification was studied in rat kidney. Ischemia alone did not alter either the activities or protein levels of superoxide dismutase and glutathione peroxidase. However, catalase activity was found to be inhibited to 82% of control. The inhibition of catalase was due to the inactivation of the enzyme as there was no significant change in enzyme protein level. Reperfusion following ischemia, however, led to a significant decrease in both the activities as well as the protein levels of all the antioxidant enzymes. The observed overall decrease in total superoxide dismutase activity was the net effect of a decrease in copper-zinc superoxide dismutase while manganese superoxide dismutase activity was found to be increased following reperfusion. This observed increased manganese superoxide dismutase activity was the result of its increased protein level. The mRNA levels for catalase, superoxide dismutases, and glutathione peroxidase were observed to be increased (100–145% of controls) following ischemia; reperfusion of ischemic kidneys, however, resulted in a significant decrease in the levels of mRNAs coding for all the enzymes except manganese superoxide dismutase which remained high. These results suggest that in tissue, the down regulation of the antioxidant enzyme system could be responsible for the pathophysiology of ischemia-reperfusion injury.  相似文献   

10.
Role of superoxide dismutase isozymes and other antioxidant enzymes was studied in relation to leaf age in sunflower (Helianthus annuus L. cv. ACC 1508) at pre-flowering and grain filling stages. Relative water content (RWC) did not change much in leaves of different age and at the two stages. Protein content declined continuously from the youngest to the oldest leaf, while chlorophyll (Chl) and carotenoids (Car) contents increased down to 7th/9th leaf and declined in subsequent older leaves. Protein, Chl and Car contents were higher at pre-flowering than at seed filling stage. Superoxide dismutase (SOD), its isozymes, and ascorbate peroxidase (APO) and catalase (CAT) activities were highest in the 9th leaf and declined in subsequent older leaves. SOD and APO activities were higher at seed filling, except in oldest senescent (13th, 15th) leaves. Among SOD isozymes, Cu/Zn-SOD and Mn-SOD activities accounted for most of the total SOD, and only marginal activity was observed for Fe-SOD. Peroxidase activity increased from youngest to the oldest leaf at pre-flowering stage and down to 13th leaf at seed filling stage. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Superoxide dismutase was purified from pea (Pisum sativum L., cv. Wando) seeds and corn (Zea mays L., cv. Michigan 500) seedlings. The purified pea enzyme eluting as a single peak from gel exclusion chromatography columns contained the three electrophoretically distinct bands of superoxide dismutase characterizing the crude extract. The purified corn enzyme eluted as the same peak as the pea enzyme, and contained five of the seven active bands found in the crude extract. The similar molecular weights and the cyanide sensitivities of these bands indicated that they are probably isozymes of a cupro-zinc superoxide dismutase. One of the remaining corn bands was shown to be a peroxidase.  相似文献   

12.
Superoxide dismutases: I. Occurrence in higher plants   总被引:18,自引:0,他引:18       下载免费PDF全文
Shoots, roots, and seeds of corn (Zea mays L., cv. Michigan 500), oats (Avena sativa L., cv. Au Sable), and peas (Pisum sativum L., cv. Wando) were analyzed for their superoxide dismutase content using a photochemical assay system consisting of methionine, riboflavin, and p-nitro blue tetrazolium. The enzyme is present in the shoots, roots, and seeds of the three species. On a dry weight basis, shoots contain more enzyme than roots. In seeds, the enzyme is present in both the embryo and the storage tissue. Electrophoresis indicated a total of 10 distinct forms of the enzyme. Corn contained seven of these forms and oats three. Peas contained one of the corn and two of the oat enzymes. Nine of the enzyme activities were eliminated with cyanide treatment suggesting that they may be cupro-zinc enzymes, whereas one was cyanide-resistant and may be a manganese enzyme. Some of the leaf superoxide dismutases were found primarily in mitochondria or chloroplasts. Peroxidases at high concentrations interfere with the assay. In test tube assays of crude extracts from seedlings, the interference was negligible. On gels, however, peroxidases may account for two of the 10 superoxide dismutase forms.  相似文献   

13.
14.
Biosynthesis of oxygen-detoxifying enzymes in Bdellovibrio stolpii.   总被引:1,自引:0,他引:1       下载免费PDF全文
Axenically grown Bdellovibrio stolpii (i.e., grown independently of the host) was examined for superoxide dismutase, catalase, and peroxidase activities. Kinetics of enzyme synthesis were determined for aerobically grown cultures and for cultures exposed to 100% oxygen. Enzymatic activities varied with the age of the culture. Normally grown cultures exhibited maximum activity during the first 10 h of growth and again as the stationary phase was approached, beginning at about 48 h. Polyacrylamide gel electropherograms of cell-free extracts revealed that B. stolpii contained one major band (1) and two minor bands (II, III) of superoxide dismutase activity. Each of these enzymes was inactivated by H2O2, indicating that they were iron-containing enzymes. Manganese-containing superoxide dismutase was not detected in B. stolpii. Increased oxygenation did not appreciably stimulate enzyme synthesis, for only superoxide dismutase was induced, reaching maximum activity at 10 h and then rapidly falling to normal levels. Superoxide dismutase appears to be the main enzymatic defense against oxygen toxicity in B. stolpii. Induction of superoxide dismutase with 100% oxygen was manifested as an increase in the intensities of the two minor bands of activity, suggesting that isozyme I is constitutive, whereas isozymes II and III are inducible. The induction of isozymes II and III by 100% oxygen was prevented by an inhibitor of protein biosynthesis, chloramphenicol.  相似文献   

15.
The contents of extracellular superoxide dismutase, CuZn superoxide dismutase and Mn superoxide dismutase were determined in tissues from nine mammalian species. The pattern of CuZn superoxide dismutase distribution was similar in all species, with high activity in metabolically active organs such as liver and kidney and low activity in, for example, skeletal muscle. Mn superoxide dismutase activity was high in organs with high respiration, such as liver, kidney, and myocardium. Overall the Mn superoxide dismutase activity in organs was almost as high as the CuZn superoxide dismutase activity. The content of extracellular superoxide dismutase was, almost without exception, lower than the content of the other isoenzymes. The pattern of tissue distribution was distinctly different from those of CuZn superoxide dismutase and Mn superoxide dismutase. The tissue distribution of extracellular superoxide dismutase differed among species, but in general there was much in lungs and kidneys and little in skeletal muscle. In man, pig, sheep, cow, rabbit and mouse the overall tissue extracellular superoxide dismutase activities were similar to each other, whereas dog, cat and rat tissues contained distinctly less. There was no general correlation between the tissue extracellular superoxide dismutase activity of any of the various species and the variable plasma activity. The ratio between the plasma and the overall tissue activities was high, for some species over unity, providing further evidence for the notion that one role of extracellular superoxide dismutase is as a plasma protein.  相似文献   

16.
In early maturation stages of Paragonimus westermani (metacercariae, 4-, 8-, 12-week old worms), activities of antioxidant enzymes, such as superoxide dismutase, catalase, peroxidase and glutathione peroxidase, were examined. Specific activity of catalase was the highest in metacercariae and decreasing with age. That of superoxide dismutase was higher in metacercariae and 4-week worms. Specific activity of peroxidase was at its peak in 4-week worms while that of glutathione peroxidase was in 8-week worms. Specific activities of all these antioxidant enzymes were decreased to their lowest in 12-week old adults.  相似文献   

17.
18.
《Free radical research》2013,47(6):361-367
The human hepatoma cell line Hep 3B, which has the hepatitis B virus genome, shows over 80% decrease of copper/zinc superoxide dismutase activity, over 90% decrease of manganese superoxide dismutase activity, over 70% decrease of catalase activity, absence of glutathione peroxidase and glutathione S-transferase activities, over 270-fold increase of ferritin content and 25-fold increase of total iron compared to normal autopsy liver. These conditions of low antioxidant enzyme activities and iron overload are those which support the accumulation of oxygen free-radicals and DNA damage commonly considered to be carcinogenic mechanisms.  相似文献   

19.
The human hepatoma cell line Hep 3B, which has the hepatitis B virus genome, shows over 80% decrease of copper/zinc superoxide dismutase activity, over 90% decrease of manganese superoxide dismutase activity, over 70% decrease of catalase activity, absence of glutathione peroxidase and glutathione S-transferase activities, over 270-fold increase of ferritin content and 25-fold increase of total iron compared to normal autopsy liver. These conditions of low antioxidant enzyme activities and iron overload are those which support the accumulation of oxygen free-radicals and DNA damage commonly considered to be carcinogenic mechanisms.  相似文献   

20.
Superoxide dismutase activity in free-living Rhizobium phaseoli is due to the presence of two different enzymes containing manganese or iron. Under usual culture conditions, the manganese-enzyme appears largely predominant but the induction of the iron-superoxide dismutase can be obtained by addition of methyl viologen to the culture media. The corresponding bacteroid, extracted from French-bean nodules, contains only a manganese-superoxide dismutase whose characteristics are similar to those of the bacterial enzyme. However, the activity of the microsymbiont is slightly lower than that of free-living cells. The presence of an active superoxide dismutase in the bacteroids suggests a significant formation of superoxide anion by their metabolism; this can be correlated with the existence of a large oxygen demand by the microsymbionts within the nodule, as suggested by their important oxygen uptake in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号