首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
R Craigie  K Mizuuchi 《Cell》1987,51(3):493-501
Transposition of Mu involves transfer of the 3' ends of Mu DNA to the 5' ends of a staggered cut in the target DNA. We find that cleavage at the 3' ends of Mu DNA precedes cutting of the target DNA. The resulting nicked species exists as a noncovalent nucleoprotein complex in which the two Mu ends are held together. This cleaved donor complex completes strand transfer when a target DNA, Mu B protein, and ATP are provided. Mu end DNA sequences that have been precisely cut at their 3' ends by a restriction endonuclease, instead of by Mu A protein and HU, are efficiently transferred to a target DNA upon subsequent incubation with Mu A protein, Mu B protein, and ATP. Cleavage of the Mu ends therefore cannot be energetically coupled with joining these ends to a target DNA. We discuss the DNA strand transfer mechanism in view of these results, and propose a model involving direct transfer of the 5' ends of the cut target DNA, from their original partners, to the 3' ends of Mu.  相似文献   

2.
PriA and other primosome assembly proteins of Escherichia coli recruit the major replicative helicase DnaB for replisome assembly during bacteriophage Mu transposition and replication. MuA transposase catalyzes the transfer of Mu ends to target DNA, forming a potential replication fork that provides the assembly site for the replisome. However, this fork lacks the single-stranded DNA needed to load DnaB. Although no pre-existing primosome assembly sites that bind PriA were found within the Mu end sequences, PriA was able to bind to the forked DNA structure created by MuA. The helicase activity of PriA could then open the duplex to create the DnaB binding site. In a tightly coupled reaction on synthetic forked substrates, PriA promoted both the unwinding of the lagging strand arm and preprimosome assembly to load DnaB onto the lagging strand template. PriA apparently translocated 3' to 5' along the lagging strand template until sufficient single-stranded DNA was exposed for binding of DnaB, which then translocated 5' to 3' in the opposite direction. Mutant PriA lacking helicase activity was unable to promote this process, and loss of PriA helicase impaired Mu DNA replication in vivo and in vitro. This suggests that the opening of the duplex by PriA helicase is a critical step in the initiation of Mu DNA replication. Concerted helicase and primosome assembly functions would allow PriA to act as initiator on recombination intermediates and stalled replication forks. As part of the replisome, PriA may act as a mobile initiator that minimizes interruptions in chromosomal replication.  相似文献   

3.
M Mizuuchi  K Mizuuchi 《The EMBO journal》2001,20(23):6927-6935
Initiation of phage Mu DNA transposition requires assembly of higher order protein-DNA complexes called Mu transpososomes containing the two Mu DNA ends and MuA transposase tetramer. Mu transpososome assembly is highly regulated and involves multiple DNA sites for transposase binding, including a transpositional enhancer called the internal activation sequence (IAS). In addition, a number of protein cofactors participate, including the target DNA activator MuB ATPase. We investigated the impact of the assembly cofactors on the kinetics of transpososome assembly with the aim of deciphering the reaction steps that are influenced by the cofactors. The transpositional enhancer IAS appears to have little impact on the initial pairing of the two Mu end segments bound by MuA. Instead, it accelerates the post-synaptic conformational step(s) that converts the reversible complex to the stable transpososome. The transpososome assembly stimulation by MuB does not require its stable DNA binding activity, which appears critical for directing transposition to sites distant from the donor transposon.  相似文献   

4.
R Kruklitis  D J Welty    H Nakai 《The EMBO journal》1996,15(4):935-944
During transposition bacteriophage Mu transposase (MuA) catalyzes the transfer of a DNA strand at each Mu end to target DNA and then remains tightly bound to the Mu ends. Initiation of Mu DNA replication on the resulting strand transfer complex (STC1) requires specific host replication proteins and host factors from two partially purified enzyme fractions designated Mu replication factors alpha and beta (MRFalpha and beta). Escherichia coli ClpX protein, a molecular chaperone, is a component required for MRFalpha activity, which removes MuA from DNA for the establishment of a Mu replication fork. ClpX protein alters the conformation of DNA-bound MuA and converts STC1 to a less stable form (STC2). One or more additional components of MRFalpha (MRFalpha2) displace MuA from STC2 to form a nucleoprotein complex (STC3), that requires the specific replication proteins and MRFbeta for Mu DNA synthesis. MuA present in STC2 is essential for its conversion to STC3. If MuA is removed from STC2, Mu DNA synthesis no longer requires MRFalpha2, MRFbeta and the specific replication proteins. These results indicate that ClpX protein activates MuA in STC1 so that it can recruit crucial host factors needed to initiate Mu DNA synthesis by specific replication enzymes.  相似文献   

5.
We describe the isolation of a variant of Mu transposase (MuA protein) which can recognize altered att sites at the ends of Mu DNA. No prior knowledge of the structure of the DNA binding domain or its mode of interaction with att DNA was necessary to obtain this variant. Protein secondary structure programs initially helped target mutations to predicted helical regions within a subdomain of MuA demonstrated to harbor att DNA binding activity. Of the 54 mutant positions examined, only two showed decreased affinity for att DNA, while eight others affected assembly of the Mu transpososome. A variant impaired in DNA binding [MuA(R146V)], and predicted to be in the recognition helix of an HTH motif, was challenged with altered att sites created from degenerate oligonucleotides to select for novel DNA binding specificity. DNA sequences bound to MuA(R146V) were detected by gel-retardation, and following several steps of PCR amplification/enrichment, were identified by cloning and sequencing. The strategy allowed recovery of an altered att site for which MuA(R146V) showed higher affinity than for the wild-type site, although this site was bound by wild-type MuA as well. The altered association between MuA(R146V) and an altered att site target was competent in transposition. We discuss the strengths and limitations of this methodology, which has applications in dissecting the functional role of specific protein-DNA associations.  相似文献   

6.
DNA transposases use a single active center to sequentially cleave the transposable element DNA and join this DNA to a target site. Recombination requires controlled conformational changes within the transposase to ensure that these chemically distinct steps occur at the right time and place, and that the reaction proceeds in the net forward direction. Mu transposition is catalyzed by a stable complex of MuA transposase bound to paired Mu DNA ends (a transpososome). We find that Mu transpososomes efficiently catalyze disintegration when recombination on one end of the Mu DNA is blocked. The MuB activator protein controls the integration versus disintegration equilibrium. When MuB is present, disintegration occurs slowly and transpososomes that have disintegrated catalyze subsequent rounds of recombination. In the absence of MuB, disintegration goes to completion. These results together with experiments mapping the MuA-MuB contacts during DNA joining suggest that MuB controls progression of recombination by specifically stabilizing a concerted transition to the “joining” configuration of MuA. Thus, we propose that MuB's interaction with the transpososome actively promotes coupled joining of both ends of the element DNA into the same target site and may provide a mechanism to antagonize formation of single-end transposition products.  相似文献   

7.
Assembly of the functional tetrameric form of Mu transposase (MuA protein) at the two att ends of Mu depends on interaction of MuA with multiple att and enhancer sites on supercoiled DNA, and is stimulated by MuB protein. The N-terminal domain I of MuA harbours distinct regions for interaction with the att ends and enhancer; the C-terminal domain III contains separate regions essential for tetramer assembly and interaction with MuB protein (IIIα and IIIβ, respectively). Although the central domain II (the ‘DDE’ domain) of MuA harbours the known catalytic DDE residues, a 26 amino acid peptide within IIIα also has a non-specific DNA binding and nuclease activity which has been implicated in catalysis. One model proposes that active sites for Mu transposition are assembled by sharing structural/catalytic residues between domains II and III present on separate MuA monomers within the MuA tetramer. We have used substrates with altered att sites and mixtures of MuA proteins with either wild-type or altered att DNA binding specificities, to create tetrameric arrangements wherein specific MuA subunits are nonfunctional in II, IIIα or IIIβ domains. From the ability of these oriented tetramers to carry out DNA cleavage and strand transfer we conclude that domain IIIα or IIIβ function is not unique to a specific subunit within the tetramer, indicative of a structural rather than a catalytic function for domain III in Mu transposition.  相似文献   

8.
A Mu transpososome assembled on negatively supercoiled DNA traps five supercoils by intertwining the left (L) and right (R) ends of Mu with an enhancer element (E). To investigate the contribution of DNA supercoiling to this elaborate synapse in which E and L cross once, E and R twice, and L and R twice, we have analyzed DNA crossings in a transpososome assembled on nicked substrates under conditions that bypass the supercoiling requirement for transposition. We find that the transposase MuA can recreate an essentially similar topology on nicked substrates, interwrapping both E-R and L-R twice but being unable to generate the single E-L crossing. In addition, we deduce that the functional MuA tetramer must contribute to three of the four observed crossings and, thus, to restraining the enhancer within the complex. We discuss the contribution of both MuA and DNA supercoiling to the 5-noded Mu synapse built at the 3-way junction.  相似文献   

9.
H Savilahti  P A Rice    K Mizuuchi 《The EMBO journal》1995,14(19):4893-4903
The two chemical steps of phage Mu transpositional recombination, donor DNA cleavage and strand transfer, take place within higher order protein-DNA complexes called transpososomes. At the core of these complexes is a tetramer of MuA (the transposase), bound to the two ends of the Mu genome. While transpososome assembly normally requires a number of cofactors, under certain conditions only MuA and a short DNA fragment are required. DNA requirements for this process, as well as the stability and activity of the ensuing complexes, were established. The divalent cation normally required for assembly of the stable complex could be omitted if the substrate was prenicked, if the flanking DNA was very short or if the two flanking strands were non-complementary. The presence of a single nucleotide beyond the Mu genome end on the non-cut strand was critical for transpososome stability. Donor cleavage additionally required at least two flanking nucleotides on the strand to be cleaved. The flanking DNA double helix was destabilized, implying distortion of the DNA near the active site. Although donor cleavage required Mg2+, strand transfer took place in the presence of Ca2+ as well, suggesting a conformational difference in the active site for the two chemical steps.  相似文献   

10.
Greene EC  Mizuuchi K 《Molecular cell》2002,10(6):1367-1378
The Mu transpososome can distinguish between proximal and distal DNA during the selection of a site for transposition. This phenomenon, termed target immunity, involves MuA-stimulated removal of MuB oligomers from sites near the Mu genome. Using a combination of ensemble and single-molecule fluorescence methods, we show that the MuA tetramer can stably associate with the DNA-bound MuB oligomer and is more efficient than monomeric MuA at stimulating the dissociation of MuB from DNA. In addition, we demonstrate that DNA looping is essential for efficient disassembly of the MuB oligomer. We propose a model in which the MuA tetramer forms a multivalent complex with the MuB oligomer and catalyzes the processive removal of MuB from DNA.  相似文献   

11.
M G Surette  S J Buch  G Chaconas 《Cell》1987,49(2):253-262
We report that two types of stable protein-DNA complexes, or transpososomes, are generated in vitro during the Mu DNA strand transfer reaction. The Type 1 complex is an intermediate in the reaction. Its formation requires a supercoiled mini-Mu donor plasmid, Mu A and HU protein, and Mg2+. In the Type 1 complex the two ends of Mu are held together, creating a figure eight-shaped molecule with two independent topological domains; the Mu sequences remain supercoiled while the vector DNA is relaxed because of nicking. In the presence of Mu B protein, ATP, target DNA, and Mg2+, the Type 1 complex is converted into the protein-associated product of the strand transfer reaction. In this Type 2 complex, the target DNA has been joined to the Mu DNA ends held in the synaptic complex at the center of the figure eight. Supercoils are not required for the latter reaction.  相似文献   

12.
The phage Mu transposase (MuA) binds to the ends of the Mu genome during the assembly of higher order nucleoprotein complexes. We investigate the structure and function of the MuA end-binding domain (Ibetagamma). The three-dimensional solution structure of the Ibeta subdomain (residues 77-174) has been determined using multidimensional NMR spectroscopy. It comprises five alpha-helices, including a helix-turn-helix (HTH) DNA-binding motif formed by helices 3 and 4, and can be subdivided into two interacting structural elements. The structure has an elongated disc-like appearance from which protrudes the recognition helix of the HTH motif. The topology of helices 2-4 is very similar to that of helices 1-3 of the previously determined solution structure of the MuA Igamma subdomain and to that of the homeodomain family of HTH DNA-binding proteins. We show that each of the two subdomains binds to one half of the 22 bp recognition sequence, Ibeta to the more conserved Mu end distal half (beta subsite) and Igamma to the Mu end proximal half (gamma subsite) of the consensus Mu end-binding site. The complete Ibetagamma domain binds the recognition sequence with a 100- to 1000-fold higher affinity than the two subdomains independently, indicating a cooperative effect. Our results show that the Mu end DNA-binding domain of MuA has a modular organization, with each module acting on a specific part of the 22 bp binding site. Based on the present binding data and the structures of the Ibeta and Igamma subdomains, a model for the interaction of the complete Ibetagamma domain with DNA is proposed.  相似文献   

13.
Retroviral DNA integration: structure of an integration intermediate   总被引:97,自引:0,他引:97  
T Fujiwara  K Mizuuchi 《Cell》1988,54(4):497-504
The structure of a presumptive DNA intermediate in the integration of retroviral DNA was studied in a cell-free reaction with exogenously added target DNA. The product made by viral core particles of Moloney murine leukemia virus (Mo-MLV) containing linear viral DNA has a structure consistent with an integration mechanism similar to that observed during bacteriophage Mu transposition. In this intermediate, the 3' ends of the LTR sequences are joined to the target DNA, while the 5' ends of the viral DNA remain unjoined. The 5' ends of the LTR sequences in the intermediate are exactly the same as those found in the unintegrated linear double-stranded viral DNA. This result demonstrates that the linear form of Mo-MLV DNA can integrate directly without prior circularization.  相似文献   

14.
15.
We report the efficient concerted integration of a linear virus-like DNA donor into a 2.8 kbp circular DNA target by integrase (IN) purified from avian myeloblastosis virus. The donor was 528 bp, contained recessed 3' OH ends, was 5' end labeled, and had a unique restriction site not found in the target. Analysis of concerted (full-site) and half-site integration events was accomplished by restriction enzyme analysis and agarose gel electrophoresis. The donor also contained the SupF gene that was used for genetic selection of individual full-site recombinants to determine the host duplication size. Two different pathways, involving either one donor or two donor molecules, were used to produce full-site recombinants. About 90% of the full-site recombinants were the result of using two donor molecules per target. These results imply that juxtapositioning an end from each of two donors by IN was more efficient than the juxtapositioning of two ends of a single donor for the full-site reaction. The formation of preintegration complexes containing integrase and donor on ice prior to the addition of target enhanced the full-site reaction. After a 30 min reaction at 37 degrees C, approximately 20-25% of all donor/target recombinants were the result of concerted integration events. The efficient production of full-site recombinants required Mg2+; Mn2+ was only efficient for the production of half-site recombinants. We suggest that these preintegration complexes can be used to investigate the relationships between the 3' OH trimming and strand transfer reactions.  相似文献   

16.
Bacteriophage Mu has one of the best studied, most efficient and largest transposition machineries of the prokaryotic world. To harness this attractive integration machinery for use in mammalian cells, we cloned the coding sequences of the phage factors MuA and MuB in a eukaryotic expression cassette and fused them to a FLAG epitope and a SV40-derived nuclear localization signal. We demonstrate that these N-terminal extensions were sufficient to target the Mu proteins to the nucleus, while their function in Escherichia coli was not impeded. In vivo transposition in mammalian cells was analysed by co-transfection of the MuA and MuB expression vectors with a donor construct, which contained a miniMu transposon carrying a Hygromycin-resistance marker (HygR). In all co-transfections, a significant but moderate (up to 2.7-fold) increase in HygR colonies was obtained if compared with control experiments in which the MuA vector was omitted. To study whether the increased efficiency was the result of bona fide Mu transposition, integrated vector copies were cloned from 43 monoclonal and one polyclonal cell lines. However, in none of these clones, the junction between the vector and the chromosomal DNA was localized precisely at the border of the Att sites. From our data we conclude that expression of MuA and MuB increases the integration of miniMu vectors in mammalian cells, but that this increase is not the result of bona fide Mu-induced transposition.  相似文献   

17.
T A Baker  M Mizuuchi  K Mizuuchi 《Cell》1991,65(6):1003-1013
The MuA and MuB proteins collaborate to mediate efficient transposition of the phage Mu genome into many DNA target sites. MuA (the transposase) carries out all the DNA cleavage and joining steps. MuB stimulates strand transfer by activating the MuA-donor DNA complex through direct protein-protein contact. The C-terminal domain of MuA is required for this MuA-MuB interaction. Activation of strand transfer occurs irrespective of whether MuB is bound to target DNA. When high levels of MuA generate a pool of free MuB (not bound to DNA) or when chemical modification of MuB impairs its ability to bind DNA, MuB still stimulates strand transfer. However, under these conditions, intramolecular target sites are used exclusively because of their close proximity to the MuA-MuB-donor DNA complex.  相似文献   

18.
Bacteriophage Mu uses non-replicative transposition for integration into the host's chromosome and replicative transposition for phage propagation. Biochemical and structural comparisons together with evolutionary considerations suggest that the Mu transposition machinery might share functional similarities with machineries of the systems that are known to employ a hairpin intermediate during the catalytic steps of transposition. Model transposon end DNA hairpin substrates were used in a minimal-component in vitro system to study their proficiency to promote Mu transpososome assembly and subsequent MuA-catalyzed chemical reactions leading to the strand transfer product. MuA indeed was able to assemble hairpin substrates into a catalytically competent transpososome, open the hairpin ends and accurately join the opened ends to the target DNA. The hairpin opening and transposon end cleavage reactions had identical metal ion preferences, indicating similar conformations within the catalytic center for these reactions. Hairpin length influenced transpososome assembly as well as catalysis: longer loops were more efficient in these respects. In general, MuA's proficiency to utilize different types of hairpin substrates indicates a certain degree of flexibility within the transposition machinery core. Overall, the results suggest that non-replicative and replicative transposition systems may structurally and evolutionarily be more closely linked than anticipated previously.  相似文献   

19.
Assembly of the Mu transpososome is dependent on specific binding sites for the MuA transposase near the ends of the phage genome. MuA also contacts terminal nucleotides but only upon transpososome assembly, and base-specific recognition of the terminal nucleotides is critical for assembly. We show that Mu ends lacking the terminal 5 bp can form transpososomes, while longer DNA substrates with mutated terminal nucleotides cannot. The impact of the mutations can be suppressed by base mismatches near the end of Mu. Deletion of the flanking strands or mutation of the terminal nucleotides has differential effects on the cleavage and strand transfer reactions. These results show that the terminal nucleotides control the assembly and activation of transpososomes by influencing conformational changes around the active site.  相似文献   

20.
The chemistry of Mu transposition is executed within a tetrameric form of the Mu transposase (MuA protein). A triad of DDE (Asp, Asp35Glu motif) residues in the central domain of MuA (DDE domain) is essential for both the strand cleavage and strand transfer steps of transposition. Previous studies had suggested that complete Mu transposition requires all four subunits in the MuA tetramer to carry an active DDE domain. Using a mixture of MuA proteins with either wild-type or altered att-DNA binding specificities, we have now designed specific arrangements of MuA subunits carrying the DDE domain. From analysis of the abilities of oriented tetramers to carry out DNA cleavage and strand transfer from supercoiled DNA, a new picture of the disposition of DNA and protein partners during transposition has emerged. For DNA cleavage, two subunits of MuA located at attL1 and attR1 (sites that undergo cleavage) provide DDE residues in trans. The same two subunits contribute DDE residues for strand transfer, also in trans. Thus, only two active DDE+ monomers within the tetramer carry out complete Mu transposition. We also show that when the attR1-R2 arrangement used on supercoiled substrates is tested for cleavage on linear substrates, alternative chemically competent DNA-protein associations are produced, wherein the functional DDE subunits are positioned at R2 rather than at R1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号