首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of our study was to determine, as a function of [Cu(2+)]/[LDL] ratios (0.5 and 0.05) and of oxidation phases, the extent of LDL oxidation by assessing the lipid and apo B oxidation products. The main results showed that: (i) kinetics of conjugated diene formation presented four phases for Cu(2+)/LDL ratio of 0.5 and two phases for [Cu(2+)]/[LDL] ratio of 0.05; (ii) oxidation product formation (cholesteryl ester and phosphatidylcholine hydroperoxides, apo B carbonyl groups) occurred early in the presence of endogenous antioxidants, under both copper oxidation conditions; (iii) apo B carbonylated fragments appeared when antioxidants were totally consumed at [Cu(2+)]/[LDL] ratio of 0.5; and (iv) antioxidant concentrations were stable, oxysterol formation was negligible, and no carbonylated fragment was detected at [Cu(2+)]/[LDL] ratio of 0.05. Depending on the copper/LDL ratio, oxidized LDL differ greatly in the nature of lipid peroxidation product and the degree of apo B fragmentation.  相似文献   

2.
Oxidative modification of LDL by vascular cells has been proposed as the mechanism by which LDL become atherogenic. The effect of ibuprofen on LDL modification by copper ions, monocytes and endothelial cells was studied by measuring lipid peroxidation products. Ibuprofen inhibited LDL oxidation in a dose-dependent manner over a concentration range of 0.1 to 2.0 mM. Ibuprofen (2 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during 2 and 6 h incubation in the presence of copper ions by 52 and 28%, respectively. Weak free radical scavenging activity of ibuprofen was observed in the DPPH test. The protective effect of ibuprofen was more marked when oxidation was induced by monocytes or endothelial cells. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides generated in LDL during monocyte-mediated oxidation by 40%. HUVEC-mediated oxidation of LDL in the absence and presence of Cu2+ was reduced by 32 and 39%, respectively. More lipid peroxides appeared when endothelial cells were stimulated by IL-1beta or TNFalpha and the inhibitory effect of ibuprofen in this case was more pronounced. Ibuprofen (1 mM, 100 microg/ml LDL) reduced the amount of lipid peroxides formed during incubation of LDL with IL-1beta-stimulated HUVEC by 43%. The figures in the absence and presence of Cu2+ for HUVEC stimulated with TNFalpha were 56 and 59%, respectively. To assess the possibility that ibuprofen acts by lowering the production rate of reactive oxygen species, the intracellular concentration of H2O2 was measured. Ibuprofen (1 mM) reduced intracellular production of hydrogen peroxide in PMA-stimulated mononuclear cells by 69%. When HUVEC were stimulated by IL-1beta or TNFalpha the reduction was 62% and 66%, respectively.  相似文献   

3.
The objective of this study was to determine the level of antioxidants, the content of fatty acids and peroxidation products, and the resistance against oxidation of native porcine LDL1 and LDL2. There were no significant differences in the fatty acid distribution of both native low density lipoprotein (LDL) subfractions, which was similar to that of human LDL. The total amount of alpha- and gamma-tocopherol of pig LDL was significantly lower than in human LDL, and beta-carotene, lycopene, and retinyl esters were totally absent. Levels of thiobarbituric acid-reacting substances (TBARS) and lipid peroxides in freshly isolated pig LDL subfractions were below or only slightly above the detection limit. The susceptibility to oxidation of both LDL subfractions was investigated by addition of Cu2+ as prooxidant. The results show that pig LDL subfractions are much more susceptible to oxidation as measured by the duration of the lag phase preceding the onset of rapid lipid peroxidation. From the low content of vitamin E one would expect even much shorter lag phases. The possibility therefore exists that pig LDL contains additional, and as yet unidentified, antioxidants.  相似文献   

4.
Copper binding to apolipoprotein B-100 (apo B-100) and its reduction by endogenous components of low-density lipoprotein (LDL) represent critical steps in copper-mediated LDL oxidation, where cuprous ion (Cu(I)) generated from cupric ion (Cu(II)) reduction is the real trigger for lipid peroxidation. Although the copper-reducing capacity of the lipid components of LDL has been studied extensively, we developed a model to specifically analyze the potential copper reducing activity of its protein moiety (apo B-100). Apo B-100 was isolated after solubilization and extraction from size exclusion-HPLC purified LDL. We obtained, for the first time, direct evidence for apo B-100-mediated copper reduction in a process that involves protein-derived radical formation. Kinetics of copper reduction by isolated apo B-100 was different from that of LDL, mainly because apo B-100 showed a single phase-exponential kinetic, instead of the already described biphasic kinetics for LDL (namely alpha-tocopherol-dependent and independent phases). While at early time points, the LDL copper reducing activity was higher due to the presence of alpha-tocopherol, at longer time points kinetics of copper reduction was similar in both LDL and apo B-100 samples. Electron paramagnetic resonance studies of either LDL or apo B-100 incubated with Cu(II), in the presence of the spin trap 2-methyl-2-nitroso propane (MNP), indicated the formation of protein-tryptophanyl radicals. Our results supports that apo B-100 plays a critical role in copper-dependent LDL oxidation, due to its lipid-independent-copper reductive ability.  相似文献   

5.
The ability of ceruloplasmin (Cp) to oxidize low-density lipoproteins (LDL) in the presence of water-soluble antioxidants was investigated and a reaction mechanism proposed. Ascorbate strongly enhanced LDL oxidation, but only after its rapid consumption. Dehydroascorbate enhanced Cp-mediated LDL oxidation even more strongly. Lipid-soluble antioxidants and water-soluble peroxides did not show noticeable activation. However, loading of LDL with lipid hydroperoxides increased the initial oxidation rate. We conclude that Cp mediates a localized redox cycle, where reduction of Cp-Cu2+ is effected by water-soluble reductants and reoxidation by liposoluble hydroperoxides.  相似文献   

6.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl-alpha-D-glucoside was ineffective on Cu2+-induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu+; this is more efficient in decomposing lipid peroxide than Cu2+, accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   

7.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl- &#102 - d -glucoside was ineffective on Cu 2+ -induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu + ; this is more efficient in decomposing lipid peroxide than Cu 2+ , accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   

8.
Oxidized LDL is present within atherosclerotic lesions, demonstrating a failure of antioxidant protection. A normal human serum ultrafiltrate of Mr below 500 was prepared as a model for the low Mr components of interstitial fluid, and its effects on LDL oxidation were investigated. The ultrafiltrate (0.3%, v/v) was a potent antioxidant for native LDL, but was a strong prooxidant for mildly oxidized LDL when copper, but not a water-soluble azo initiator, was used to oxidize LDL. Adding a lipid hydroperoxide to native LDL induced the antioxidant to prooxidant switch of the ultrafiltrate. Uric acid was identified, using uricase and add-back experiments, as both the major antioxidant and prooxidant within the ultrafiltrate for LDL. The ultrafiltrate or uric acid rapidly reduced Cu2+ to Cu+. The reduction of Cu2+ to Cu+ may help to explain both the antioxidant and prooxidant effects observed. The decreased concentration of Cu2+ would inhibit tocopherol-mediated peroxidation in native LDL, and the generation of Cu+ would promote the rapid breakdown of lipid hydroperoxides in mildly oxidized LDL into lipid radicals. The net effect of the low Mr serum components would therefore depend on the preexisting levels of lipid hydroperoxides in LDL. These findings may help to explain why LDL oxidation occurs in atherosclerotic lesions in the presence of compounds that are usually considered to be antioxidants.  相似文献   

9.
《Free radical research》2013,47(4-5):227-235
It was observed that during the storage of human extracellular fluids at – 20°C the azide-inhibitable ferroxidase activity of caeruloplasmin declined, whilst a new azide-resistant ferroxidase activity (ARFA) developed. The literature suggested that storage-induced ARFA might be due to either a poorly defined enzymatic activity of a low density lipoprotein (LDL) or to lipid peroxides formed within the different lipoprotein fractions. To study this further, the major lipoprotein classes were separated from human serum by density gradient centrifugation. After storage of the lipoprotein fractions, it was found that the LDL fraction had the highest specific activity of ARFA and the highest content of lipid peroxidation products, as assessed by diene conjugates. The ARFA of LDL correlated with its content of diene conjugates and TBA reactive material, which initially suggested that the Fe(II) oxidising activity of peroxidised LDL arose from the reduction of peroxides by Fe(II) in the classical reaction between the metal ion and free radical reduction of lipid peroxides. However. steady state kinetic analysis indicated an enzymic role of LDL in Fe(II) oxidation, with lipid peroxides acting as a substrate for the enzyme. These results indicate that LDL may contain a peroxidase activity. catalysing the oxidation of Fe(II) by lipid peroxides, as well as a ferrous oxidase activity where O2 is the oxidising substrate.  相似文献   

10.
The mechanisms by which low-density lipoprotein (LDL) particles undergo oxidative modification to an atherogenic form that is taken up by the macrophage scavenger-receptor pathway have been the subject of extensive research for almost two decades. The most common method for the initiation of LDL oxidation in vitro involves incubation with Cu(II) ions. Although various mechanisms have been proposed to explain the ability of Cu(II) to promote LDL modification, the precise reactions involved in initiating the process remain a matter of contention in the literature. This review provides a critical overview and evaluation of the current theories describing the interactions of copper with the LDL particle. Following discussion of the thermodynamics of reactions dependent upon the decomposition of preexisting lipid hydroperoxides, which are present in all crude LDL preparations, attention is turned to the more difficult (but perhaps more physiologically-relevant) system of the hydroperoxide-free LDL particle. In both systems, the key role of alpha-tocopherol is discussed. In addition to its protective, radical-scavenging action, alpha-tocopherol can also behave as a prooxidant via its reduction of Cu(II) to Cu(I). Generation of Cu(I) greatly facilitates the decomposition of lipid hydroperoxides to chain-carrying radicals, but the mechanisms by which the vitamin promotes LDL oxidation in the absence of preformed hydroperoxides remain more speculative. In addition to the so-called tocopherol-mediated peroxidation model, in which polyunsaturated fatty acid oxidation is initiated by the alpha-tocopheroxyl radical (generated during the reduction of Cu(II) by alpha-tocopherol), an evaluation of the role of the hydroxyl radical is provided. Important interactions between copper ions and thiols are also discussed, particularly in the context of cell-mediated LDL oxidation. Finally, the mechanisms by which ceruloplasmin, a copper-containing plasma protein, can bring about LDL modification are discussed. Improved understanding of the mechanisms of LDL oxidation by copper ions should facilitate the establishment of any physiological role of the metal in LDL modification. It will also assist in the interpretation of studies in which copper systems of LDL oxidation are used in vitro to evaluate potential antioxidants.  相似文献   

11.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

12.
Acetylcholine esterase protects LDL against oxidation   总被引:6,自引:0,他引:6  
Acetylcholine esterase (AChE) and paraoxonase 1 (PON1) are both serum ester hydrolases, which are associated with the prevalence of myocardial infarction. Both genes are located in close proximity on chromosome 7q21-22. As PON1 was suggested to protect against cardiovascular diseases secondary to its ability to break down oxidized lipids and to inhibit LDL oxidation, we examined AChE capacity to protect LDL against oxidation. Preincubation of LDL with AChE retarded the onset of copper ion-induced LDL oxidation in a concentration-dependent manner. AChE significantly reduced the formation of lipid peroxides and TBARS during the course of LDL oxidation, by up to 45%. This effect was associated with AChE-mediated hydrolysis of lipid peroxides, which accounts for the inhibition in the onset of LDL oxidation, the oxidative propagation phase, and aldehyde formation. We conclude that AChE, similar to PON1, can hydrolyze lipid peroxides and thus may prevent the accumulation of oxidized LDL and attenuate atherosclerosis development.  相似文献   

13.
Abuja PM  Lohner K  Prassl R 《Biochemistry》1999,38(11):3401-3408
The interactions of the lipid and protein moiety of human low-density lipoprotein (LDL) and their influence on the oxidation behavior of LDL were modified using an amphipathic peptide, melittin, as a probe. The interaction of melittin with the LDL phospholipid surface resulted in a destabilization of apolipoprotein B-100 (apoB-100) as monitored by differential scanning calorimetry, while the characteristics of lipid core melting remained nearly unchanged. Binding of melittin caused a restriction of lipid chain mobility near the glycerol backbone, but not in the middle or near the methyl terminus of the fatty acyl chains as observed by electron paramagnetic resonance. Also, upon melittin addition, the level of copper binding to apoB-100 and the oxidizability of LDL by Cu2+ ions were greatly reduced, as indicated by abolished tryptophan fluorescence quenching upon Cu2+ binding and, during oxidation, prolongation of the lag phase of oxidation, attenuated consumption of alpha-tocopherol, and a lowered maximal rate of conjugated diene formation. This reduction of oxidizability could not be reversed by increasing the Cu2+ concentration. It is deduced that interaction of Cu2+ and alpha-tocopherol is required for reductive activation of the metal. It can be abolished by interfering with the interactions between apoB-100 and the lipid moiety of LDL which modifies the conformation of LDL and, as a consequence, hinders copper binding to apoB-100.  相似文献   

14.
High-density lipoprotein (HDL) incubated with low-density lipoprotein (LDL) under oxidising conditions has previously been reported to decrease the accumulation of lipid peroxides on LDL and to diminish the biological effects of LDL, which would have been present had it been oxidatively modified in the absence of HDL. Thus far direct evidence that oxidative modification of LDL is diminished by HDL has, however, been lacking. We used electrospray ionisation mass spectrometry (ESI-MS) to detect 4-hydroxy-2-nonenal (HNE)-modified histidine residues of tryptic fragments of LDL which had been subject to Cu(2+) induced oxidation both in the presence and absence of human or avian HDL. HNE-modified angiotensin II was introduced into the incubation mixture as an internal standard and to check that HDL did not interfere in the detection of HNE-modified peptides non-specifically. Our results confirmed earlier reports that HNE modification of histidine occurs during the oxidation of LDL and for the first time revealed a marked attenuation of the process in the presence of human HDL with no effect on the detection of HNE-modified angiotensin II by ESI-MS. Avian HDL, which lacks the anti-oxidative enzyme paraoxonase, did not affect the formation of apo B adducts. Our findings therefore suggest that covalent linkage of lipid peroxidation products to LDL protein as well as the accumulation of lipid peroxides on LDL is diminished in the presence of HDL containing paraoxonase.  相似文献   

15.
Oxidatively modified low-density lipoprotein (LDL) has numerous atherogenic properties, and antioxidants that can prevent LDL oxidation may act as antiatherogens. We have previously shown that vitamin C (L-ascorbic acid, AA) and its two-electron oxidation product dehydro-L-ascorbic acid (DHA) strongly inhibit copper (Cu)-induced LDL oxidation. These findings are unusual, as AA is known to act not only as an antioxidant, but also a pro-oxidant in the presence of transition metal ions in vitro, and DHA has no known reducing capacity. Here we report that human LDL (0.4 mg protein/ml) incubated with 40 μM Cu2+ binds 28.0 ± 3.3 Cu ions per LDL particle (mean ± SD, n = 10). Co-incubation of LDL with AA or DHA led to the time- and concentration-dependent release of up to 70% of bound Cu, which was associated with the inhibition of LDL oxidation. Incubation of LDL with Cu and AA or DHA also led to the time-dependent formation of 2-oxo-histidine, an oxidized derivative of histidine with a low affinity for Cu. Addition of free histidine prevented the formation of the LDL-Cu complexes and inhibited LDL oxidation, despite the fact that Cu remained redox-active. Interestingly, histidine was more effective than AA or DHA at limiting Cu binding to LDL, but at low concentrations AA and DHA were more effective than histidine at inhibiting LDL oxidation. These data suggest that there are at least two types of Cu binding sites on LDL: those that bind Cu in a redox-active form critical for initiation of LDL oxidation, and those that bind Cu in a redox-inactive form not contributing to LDL oxidation. The former sites may be primarily histidine residues of apolipoprotein B-100 that are oxidized to 2-oxo-histidine in the presence of Cu and AA or DHA, thus explaining, at least in part, the unusual inhibitory effect of vitamin C on Cu-induced LDL oxidation.  相似文献   

16.
Copper-induced LDL oxidation is characterized by an 'induction phase' (lag phase) during which the endogenous antioxidants are consumed, followed by a 'propagation phase' in which the LDL-associated polyunsaturated fatty acids are oxidized. Oxidation products may play an important role in the propagation of the oxidative process in the arterial intima as they increase the permeability of the damaged endothelium to various plasma components, including LDL. We therefore found it of interest to investigate the kinetics of LDL oxidation in vitro under conditions where LDL is sequentially exposed to Cu2+-induced oxidation.

The results of our studies demonstrate that when native LDL is exposed to copper oxidation in a medium containing oxidized LDL, oxidation of the added LDL may be almost instantaneous. Furthermore, even when native LDL is added to 'oxidizing LDL' towards the end of the lag phase or during the propagation phase it becomes oxidized after a very short lag. This oxidation process, occurring in spite of the possible protective effect of the antioxidants present in the newly added LDL, indicates that although antioxidants prolong the latency period by preventing the formation of active free radicals, when such radicals are present in the system, oxidation propagates. These results lend strong support to the generally accepted paradigm regarding the mechanism of propagation of lipid oxidation.

In view of the effect of oxidation products on the permeability of the endothelium, the observed shortening of the lag period may result in a vicious cycle, independent of the LDL-associated antioxidants, leading to continuing oxidation and foam cell formation.  相似文献   

17.
Lin X  Xue LY  Wang R  Zhao QY  Chen Q 《The FEBS journal》2006,273(6):1275-1284
Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders.  相似文献   

18.
Human serum paraoxonase (PON1) can protect low density lipoprotein (LDL) from oxidation induced by either copper ion or by the free radical generator azo bis amidinopropane hydrochloride (AAPH). During LDL oxidation in both of these systems, a time-dependent inactivation of PON arylesterase activity was observed. Oxidized LDL (Ox-LDL) produced by lipoprotein incubation with either copper ion or with AAPH, indeed inactivated PON arylesterase activity by up to 47% or 58%, respectively. Three possible mechanisms for PON inactivation during LDL oxidation were considered and investigated: copper ion binding to PON, free radical attack on PON, and/or the effect of lipoprotein-associated peroxides on the enzyme. As both residual copper ion and AAPH are present in the Ox-LDL preparations and could independently inactivate the enzyme, the effect of minimally oxidized (Ox-LDL produced by LDL storage in the air) on PON activity was also examined. Oxidized LDL, as well as oxidized palmitoyl arachidonoyl phosphatidylcholine (PAPC), lysophosphatidylcholine (LPC, which is produced during LDL oxidation by phospholipase A2-like activity), and oxidized cholesteryl arachidonate (Ox-CA), were all potent inactivators of PON arylesterase activity (PON activity was inhibited by 35%-61%). PON treatment with Ox-LDL (but not with native LDL), or with oxidized lipids, inhibited its arylesterase activity and also reduced the ability of the enzyme to protect LDL against oxidation. PON Arylesterase activity however was not inhibited when PON was pretreated with the sulfhydryl blocking agent, p-hydroxymercurybenzoate (PHMB). Similarly, on using recombinant PON in which the enzyme's only free sulfhydryl group at the position of cysteine-284 was mutated, no inactivation of the enzyme arylesterase activity by Ox-LDL could be shown. These results suggest that Ox-LDL inactivation of PON involves the interaction of oxidized lipids in Ox-LDL with the PON's free sulfhydryl group. Antioxidants such as the flavonoids glabridin or quercetin, when present during LDL oxidation in the presence of PON, reduced the amount of lipoprotein-associated lipid peroxides and preserved PON activities, including its ability to hydrolyze Ox-LDL cholesteryl linoleate hydroperoxides. We conclude that PON's ability to protect LDL against oxidation is accompanied by inactivation of the enzyme. PON inactivation results from an interaction between the enzyme free sulfhydryl group and oxidized lipids such as oxidized phospholipids, oxidized cholesteryl ester or lysophosphatidylcholine, which are formed during LDL oxidation. The action of antioxidants and PON on LDL during its oxidation can be of special benefit against atherosclerosis since these agents reduce the accumulation of Ox-LDL by a dual effect: i.e. prevention of its formation, and removal of Ox-LDL associated oxidized lipids which are generated during LDL oxidation.  相似文献   

19.
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated with Cu(2+) ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu(2+) to Cu(+) and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu(+) oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides.  相似文献   

20.
Oxidation of low-density lipoprotein (LDL) has been recognized as playing an important role in the development and progression of atherosclerotic heart disease. Human LDL was isolated and challenged with a range of oxidants either in the presence or absence of AGE or its diethyl ether extract. Oxidative modification of the LDL fraction using CuSO(4), 5-lipoxygenase and xanthine/xanthine oxidase was monitored by both the appearance of thiobarbituric-acid substances (TBA-RS) and an increase in electrophoretic mobility.This study indicates that AGE is an effective antioxidant as it scavenged superoxide ions and reduced lipid peroxide formation in cell free assays. Superoxide production was completely inhibited in the presence of a 10% (v/v) aqueous preparation of AGE and reduced by 34% in the presence of a 10% (v/v) diethyl ether extract of AGE. The presence of 10% (v/v) diethyl ether extract of AGE significantly reduced Cu(2+) and 15-lipoxygenase-mediated lipid peroxidation of isolated LDL by 81% and 37%, respectively. In addition, it was found that AGE also had the capacity to chelate copper ions. In contrast, the diethyl ether extract of AGE displayed no copper binding capacity, but demonstrated distinct antioxidant properties. These results support the view that AGE inhibits the in vitro oxidation of isolated LDL by scavenging superoxide and inhibiting the formation of lipid peroxides. AGE was also shown to reduce LDL oxidation by the chelation of Cu(2+). Thus, AGE may have a role to play in preventing the development and progression of atherosclerotic disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号