首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility that prostaglandin E2 (PGE2) may play a role in luteinizing hormone (LH) release was examined using an model. Addition of luteinizing hormone-releasing hormone (LH-RH) to the culture medium stimulated cyclic AMP accumulation and LH-release by incubated hemipituitaries, but did not affect the level of PGE2 or prostaglandin synthetase activity in the gland. Aspirin and indomethacin reduced both prostaglandin synthetase activity and PGE2 content in the pituitary, but did not impair the stimulatory action of LH-RH on either cyclic AMP accumulation or LH-release. Flufenamic acid on its own caused LH-release, but the drug abolished the effect of LH-RH on cyclic AMP accumulation. The mechanism of this action of flufenamic acid is not understood.It is concluded that the stimulatory action of LH-RH on pituitary cyclic AMP production and LH release is not mediated by prostaglandins.  相似文献   

2.
Z Naor  Y Koch  S Bauminger  U Zor 《Prostaglandins》1975,9(2):211-219
The possibility that prostaglandin E2 (PGE2) may play a role in luteinizing hormone (LH) release was examined using an in vitro model. Addition of luteinizing hormone-releasing hormone (LH-RH) to the culture medium stimulated cyclic AMP accumulation and LH-release by incubated hemipituitaries, but did not affect the level of PGE2 or prostaglandin synthetase activity in the gland. Aspirin and indomethacin reduced both prostaglandin synthetase activity and PGE2 or prostaglandin synthetase activity in the gland. Aspirin and indomethacin reduced both prostaglandin synthetase activity and PGE2 content in the pituitary, but did not impair the stimulatory action of LH-RH on either cyclic AMP accumulation or LH-release. Flufenamic acid on its own caused LH-release, but the drug abolished the effect of LH-RH on cyclic AMP accumulation. The mechanism of this action of flufenamic acid is not understood. It is concluded that the stimulatory action of LH-RH on pituitary cyclic AMP production and LH release is not mediated by prostaglandins.  相似文献   

3.
The ability of prostaglandin E2 (PGE2) to initiate luteinization was demonstrated using a system of in vitro incubation of ovarian follicles followed by transplantation. Follicles from diestrous rats were incubated with 0.05 to 50 μg/ml PGE2, 10 μg/ml luteinizing hormone (LH), or alone in Krebs-Ringer bicarbonate buffer plus glucose for 2 hr. Then follicles were transplanted under the kidney capsules of hypophysectomized recipients, with follicles exposed to PGE2 on one side and those exposed to LH or buffer only on the other side. As determined at autopsy 4 days later and confirmed by histological examination, follicles exposed to PGE2 at concentrations of 0.5 μg/ml or greater, or to LH, transformed into corpora lutea, but control follicles regressed. Incubation of follicles with LH in the presence of indomethacin, an inhibitor of prostaglandin synthesis, significantly reduced the incidence of luteinization. Prostaglandin E2 (10 μg/ml) was able to override the inhibition of luteinization by indomethacin (150 μg/ml). The prostaglandin analogue 7-oxa-13-prostynoic acid (100 μg/ml) failed to prevent luteinization in response to either 5 μg/ml LH or 1 μg/ml PGE2. Results with PGE2 and with indomethacin suggest a role for prostaglandins in the luteinizing action of LH.We have reported previously that in vitro exposure of diestrous rat follicles to luteinizing hormone (LH) will result in transformation of the follicles to corpora lutea following transplantation under the kidney capsules of hypophysectomized rats. Dibutyryl cyclic AMP (DBC) mimics this effect of LH, and transplants produce progesterone in measurable amounts after both LH and DBC exposure when prolactin is administered in vivo to recipients.Kuehl et al. have suggested that prostaglandins may act as obligatory intermediates in the effect of LH on the ovary, acting between LH and adenylate cyclase. Preliminary results indicated that prostaglandin E2 (PGE2) could induce luteinization in our system. The extent of prostaglandin involvement in luteinization was further investigated in this work, using two reported antagonists of prostaglandin action, indomethacin and 7-oxa-13-prostynoic acid. Indomethacin has been found to inhibit synthesis of prostaglandins E2 and F; 7-oxa-13-prostynoic acid, which acts as a competitive antagonist of prostaglandins, prevented the effect of LH and prostaglandins E1 and E2 on cyclic AMP production in mouse ovaries.  相似文献   

4.
Corpora lutea explanted from rats on the sixth day of pregnancy responded to luteinizing hormone (LH; 5 μg/ml) in vitro with a two- to five-fold increase in cellular cyclic AMP (cAMP) concentration. The maximal cAMP level was reached within 60 min and maintained to the end of the 2 hr-incubation. On incubation with prostaglandin F (PGF) in addition to LH, this rise in cAMP accumulation was prevented. For significant suppression, 1.4 × 10?5M PGF was required. In the absence of LH, PGF (4.2 × 10?5M) caused no change in cellular cAMP. Addition of PGF (4.2 × 10?5M) to the incubation medium after the maximal response to LH was attained, caused the cAMP concentration to return to its basal level within 15 min. This abrogation of LH-stimulated cAMP accumulation represents the earliest and hence possibly the triggering event in PGF-induced luteolysis.  相似文献   

5.
Rat Graafian follicles isolated intact responded to 8-Br-cyclic GMP (0.3 and 1.0 mM) with increased prostaglandin E (PGE) production (4-fold and 8-fold, respectively) during a 6 h incubation. The effect of 8-Br-cyclic GMP was noted after a lag period of 2–4 h. 8-Br-cyclic AMP (1.0 mM) also stimulated PGE production (4-fold increase), while 8-Br-cyclic IMP, 8-Br-5′GMP and 8-Br-5′AMP were inactive in this respect. Actinomycin D (10 μg/ml) and cycloheximide (10 μg/ml) given simultaneously with 8-Br-cyclic GMP prevented the stimulatory effect of the cyclic nucleotide. The results suggest that cyclic GMP induces de novo synthesis of a macromolecular component of the ovarian prostaglandin synthetase system, and that this cyclic nucleotide, along with cyclic AMP, may play a role in the known stimulatory action of luteinizing hormone on follicular prostaglandin production.  相似文献   

6.
The effect of prostaglandin E1 (PGE1) on rat anterior pituitary cyclic AMP accumulation and luteinizing hormone (LH) release was studied both in vivo and in vitro. Addition of PGE1 to incubation medium over a concentration range of 10-6 to 10-4 M produced a graded increase in pituitary cyclic AMP. At the lowest concentration (10-6 M) there was no significant increase in LH release, but proportional increments in LH release were seen with increasing concentrations of PGE1.Ten minutes after intravenous administration of 5 μg of PGE1 to adult male rats, pituitary cyclic AMP was substantially increased while serum LH levels were not changed. Administration of a higher dose of PGE1 (20 μg) produced a greater increase in pituitary cyclic AMP; and, at this dose serum LH was significantly increased. These results suggest that the PGE1 effect on LH release is mediated by the adenyl cyclase — cyclic AMP system.  相似文献   

7.
Studies on the cyclic AMP response to prostaglandin in human lymphocytes   总被引:4,自引:0,他引:4  
It is generally thought that cyclic AMP acts as the second messenger for prostaglandin E in human lymphocytes. We have recently found that the mitogen-induced proliferation of human lymphocytes is no longer inhibited by PGE2 if the lymphocytes are preincubated overnight prior to the addition of mitogens and PGE2. In this paper we report that lymphocytes also lose their cyclic AMP response to mitogens after preincubation. The loss of sensitivity to PGE with preincubation can be blocked by cyclohexamide (25 μg/ml). Indomethacin (1 μg/ml) partially blocked the loss of sensitivity, but removal of the glass-adherent cells did not. Since either manipulation effectively stops prostaglandin production in the preincubation cultures, it would appear that indomethacin prevented the loss of sensitivity to PGE2 by a mechanism other than inhibition of PG synthetase. The addition of phytohemagglutinin to the preincubation cultures also blocked the loss of sensitivity to PGE2.  相似文献   

8.
Isolated bovine, canine, and human coronary arteries exhibited dose dependent contractions to prostaglandin (PG) E2 and F (50 ng/ml to 10 μg/ml). The ED50 value for both PGE2 and PGF was 500 ng/ml in the bovine and human coronary arteries. Paradoxically, although PGE2 and PGF are vasoconstrictors, administration of their precursor, arachidonate (100 ng/ml to 10 μg/ml) caused relaxation of the bovine, canine and human coronary arteries. This observation suggests that arachidonate is not being converted by the coronary PG synthetase to PGE2 or PGF. However, the arachidonate induced coronary relaxation was inhibited by pretreatment with PG synthetase inhibitors, indomethacin, meclofenemate and aspirin. Indomethacin addition to the strips previously relaxed by arachidonate caused contraction. In contrast to other PGs (E2 and F), PGE1 (10 ng/ml to 10 μg/ml) caused dose dependent relaxation of the bovine coronary arteries (ED50 = 100 ng/ml). Indomethacin induced further relaxation of the blood vessels previously relaxed by PGE1. Since PGE1 cannot arise from arachidonate, the arachidonate coronary dilation and reversal by indomethacin must be independent of PGE1 formation. Linolenate (100 ng/ml to 10 μg/ml) and oleate (100 ng/ml to 10 μg/ml) also caused relaxation of the bovine coronary blood vessels both before and after indomethacin, thereby eliminating a direct non-specific fatty acid effect as the cause of the arachidonate relaxation. These results suggest that in isolated coronaries, arachidonate undergoes a novel conversion, possibly by PG synthetase, to a dilating substance which exerts different contractile effects than exogenously administered PGE2, PGF and PGE1.This work was supported by (USPHS) training grants NS 05221, RCDA (P.N.) HL-19586, HL-11771A, HL-14397 and SCOR grant HL-17646, HL-17646-0.  相似文献   

9.
We have shown that TSH increases PG levels in isolated bovine thyroid cells. We now report that TSH also increases PG levels in rat and mouse thyroid, and that these effects may be mediated via cyclic AMP. PG and cyclic AMP levels in intact rat and mouse thyroid lobes were measured by radioimmunoassay. During 60-min incubations at 37°C, 25 mU/ml TSH effected a 75–83% increase in PGE1 and PGF ”equivalents“ in rat thyroid; parallel measurements of endogenous cyclic AMP in these intact thyroid lobes revealed that maximal TSH-induced increase in cyclic AMP also required 60-min incubations. In mouse thyroid, 5 mU/ml TSH increased PGE1 and PGF levels 38–82% above basal; this TSH effect was evident within 15 min of incubation, thus mimicking the time-course of TSH-induced increase in mouse thyroid cyclic AMP. Exogenous DBcAMP, 0.5 to 3 mM, effected a dose-related increase in mouse thyroid PG levels. The stimulatory effects of both TSH and DBcAMP on mouse thyroid PG levels were abolished by aspirin and indomethacin. These studies suggest that TSH-induced increase in endogenous PG levels in thyroid may be mediated by cyclic AMP.  相似文献   

10.
Serum LH levels were determined by radioimmunoassay at the normal time of the proestrous LH peak (17.30 – 18.00) and ovulatory performance was examined on the morning of estrus in rats treated with indomethacin, an inhibitor of prostaglandin synthesis. When the drug was administered at 14.30 on the day of proestrus, only 21% of the rats ovulated and the total number of ova shed was reduced to 4% of that found in the untreated control group, but there was no significant change in peak serum LH level (1122 ± 184 vs. 975 ± 240 ng/ml ± S.E., treated vs. control). Prostaglandin E2 (PGE2) given late on the day of proestrus (25 to 750 μ g/rat at 24.00) was effective in overcoming this antiovulatory action of indomethacin: 71–90% of the rats ovulated, though the number of eggs shed was low (24–55% of control value). Indomethacin was still effective in blocking ovulation when given at 20.00, that is after completion of the proestrous LH surge, but not at 24.00. Administration of PGE2 (2 × 750 μ g/rat) in the early afternoon of proestrus elicited a rise in serum LH levels in rats in which the cyclic LH surge had been blocked with Nembutal (470 ± 87 vs. 106 ± 17 ng/ml ± S.E.) and induced ovulation in two-thirds of these animals.The results confirm, by direct measurement, that indomethacin does not block LH release but interferes with a late phase of the ovulatory process. PGE2 reverses this action of indomethacin on the ovary. In addition, PGE2 has a central effect causing LH release.  相似文献   

11.
The luteotrophic properties of LH were examined by determining whether this hormone could overcome the luteolytic action of Prostaglandin F (PGF) in vivo.Sheep with ovarian autotransplants were given intra-arterial infusions of LH (10 μ g/h for 6 h). PGF (5 μ g/h) was then added to the infusate and the infusion continued for 6 hours. In all cases, LH failed to counteract the effect of PGF and luteolysis resulted.  相似文献   

12.
Abstract— —The biosynthesis of immunoreactive prostaglandin E (iPGE) was examined in homogenates of rat superior cervical ganglia and in isolated intact ganglia incubated in vitro. Ganglia homogenates produced iPGE from exogenous arachidonic acid. Prostaglandin synthesis by the homogenates was inhibited by the prostaglandin synthetase inhibitors, eicosatetraynoic acid, indomethacin and sodium meclofenamate and was stimulated by norepinephrine and dopamine. Whole ganglia incubated in Krebs-bicarbonate solution also synthesized iPGE which was released into the incubation bath in a time-dependent manner. As observed in the homogenates, norepinephrine and dopamine enhanced iPGE formation by the intact tissue. Phospholipase A also stimulated iPGE synthesis by the whole ganglia. The effect of phospholipase A was antagonized by dibutyryl cyclic AMP but not by dibutyryl cyclic GMP. The results suggest that neuronally synthesized prostaglandins may be available for modulating adrenergic neuron function and that endogenous neuronal constituents such as catecholamines and cyclic AMP may influence the activity of the prostaglandin synthetase system.  相似文献   

13.
The effects on human platelets of two synthetic analogues of prostaglandin endoperoxides were examined in order to explore the relationship between aggregation and prostaglandin and cyclic nucleotide metabolism, and to help elucidate the role of the natural endoperoxide intermediates in regulating platelet function.Both analogues (Compound I, (15S)-hydroxy-9α,11α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid, and Compound II, (15S)-hydroxy-11α,9α-(epoxymethano)-prosta-(5Z,13E)-dienoic acid) caused platelets to aggregate, an effect which could be inhibited by prostaglandin E1 but not by indomethacin. Compound II produced primary, reversible aggregation at concentrations which did not induce release of 5-hydroxytryptamine. Production of thromboxane B2 and malonyldialdehyde was monitored as an index of endogenous production of prostaglandin endoperoxides and thromboxane A2 and were increased after incubation of human platelets with thrombin, collagen or arachidonic acid. However, neither malonydialdehyde nor thromboxane B2 levels were significantly influenced by the endoperoxide analogues. Both analogues produced a small elevation of adenylate cyclase activity in platelet membranes and of cyclic AMP content in intact platelets, but neither had any modifying effect on the much greater stimulation of adenylate cyclase and cyclic AMP levels by prostaglandin E1. Of all the aggregating agents tested, only arachidonic acid produced any significant increase in platelet cyclic GMP levels.These results suggest that the epoxymethano analogues of prostaglandin endoperoxides induce platelet aggregation independently of thromboxane biosynthesis and without inhibiting adenylate cyclase or lowerin platelet cyclic AMP levels. They therefore differ from better known aggregating agents such as ADP, epinephrine and collagen, which increase thromboxane A2 production and reduce cyclic AMP levels, at least in platelets previously exposed to prostaglandin E1.  相似文献   

14.
The mechanism of the stimulatory effect of prostaglandin(PG) F on the production of hexosamine-containing substance by cultured fibroblasts was studied. Treatment of the cells with 1 μg/ml of PGF resulted in a doubled net synthesis of acidic glycosaminoglycans during 20 hrs measured with uronic acid as index, and also resulted in 300 per cent increase of 3H-glucosamine incorporation into hexosamine-containing substances during the first 6 hrs. Fractionation of the PGF-stimulated hexosamine-containing substances with double isotope technique revealed that hyaluronic acid was the most stimulated component. Prior to the increase of hyaluronic acid, hyaluronic acid synthetase activity was found to be augmented by PGF as high as 4 times over the control. The augmentation of hyaluronic acid synthetase activity by PGF did not take place if actinomycin D was simultaneously present in the culture medium, suggesting that PGF induced the enzyme.  相似文献   

15.
This study evaluated the relationship between LH, cyclic AMP, cyclic GMP, and testosterone using in vitro incubation of decapsulated rat testes and sampling incubation medium. With added LH (1.0, 5.0, 100, and 500 mIU/ml) there were statistically significant increases in cyclic AMP at 5 mIU/ml or more LH, and progressively greater titers of this nucleotide were produced as LH was increased. For cyclic GMP all levels of added LH caused significant increments in titers of nucleotide; however, peak cyclic GMP concentrations occurred with 5 mIU/ml of LH. The addition of 10(-3) and 10-(4)M 8-bromo-cyclic AMP caused significant increases in testosterone production, while no changes in production of this androgen were found with 10(-3), 10(-4), or 10(-5)M 8-bromo-cyclic GMP. Neither cyclic AMP nor cyclic GMP titers were altered by the addition of 1 to 50 micrograms/ml of testosterone to medium bathing the rat testes. The dose response curves of cyclic AMP and cyclic GMP to LH are different. Progressive increments in added LH cause parallel increases of cyclic AMP and a biphasic change of cyclic GMP, 8-bromo-cyclic GMP does not cause testosterone generation, suggesting that cyclic GMP does not result in androgen synthesis. However, cyclic GMP may be involved in other Leydig cell functions.  相似文献   

16.
Using metrizamide gradient centrifugation two populations of Leydig cells were found in both 60-90 day-old and 24 month-old rats. Cells from both Band 2 (B2) and Band 3 (B3) responded to LH stimulation with increased cyclic AMP formation; however, only B3 cells produced significant amounts of testosterone. Cells from both B2 and B3 of the old rats synthesized less cyclic AMP and testosterone than cells from their younger counterparts. In response to LH stimulation, 0.01 - 1.0 mIU/ml, no appreciable difference of cyclic AMP formation could be detected between young and old Leydig cells. Maximal testosterone production occurred when 1 mIU/ml LH was used. Only when LH concentration was increased to 10 and 100 mIU/ml, did young Leydig cells produce significantly more cyclic AMP than old Leydig cells. After addition of 5X10(-7)M of pregnenolone or progesterone to the incubation medium, both young and old Leydig cells produced comparable amounts of testosterone. These results demonstrate no impairment of old rat Leydig cells to synthesize testosterone from pregnenolone and progesterone.  相似文献   

17.
Arachidonic acid causes a sharp transient increase in cyclic AMP levels in primary epithelial cell cultures obtained from C3H mouse mammary tumors. The effect is evident within two minutes and is enhanced by theophylline or 3-isobutyl-1-methylxanthine. Maximum increase in cyclic AMP levels are observed with a dose of 100 μg/ml of arachidonic acid (AA). At higher dose levels the increase in cyclic AMP levels is reduced. Naproxen, an inhibitor of prostaglandin synthesis in this system markedly reduces the stimulation of cyclic AMP by arachidonic acid but it does not affect the increase in cyclic AMP levels observed after the addition of prostaglandin E's, epinephrine or cholera enterotoxin.Arachidonic acid, under the same conditions, also causes a significant elevation of PGE and PGF media levels which is slower and more sustained than the cAMP response. The data strongly suggest that a metabolite of arachidonic acid is responsible for the cyclic rise, however, it is not certain whether this is due to PGE2 or some other product.  相似文献   

18.
Prostaglandins F and F, at high concentrations (≥28 μM) enhanced cyclic AMP accumulation in dog thyroid slices. At lower concentrations, they inhibited the cyclic AMP accumulation induced by thyrotropin (TSH), prostaglandin E1, and cholera toxin. This effect was rapid in onset and of short duration, calcium-dependent and suppressed by methylxanthines. Prostaglandin Fα also inhibited TSH-induced secretion and activated iodine binding to proteins. These characteristics are similar to those of carbamylcholine action, except that prostaglandins F did not enhance cyclic GMP accumulation. The effect of prostaglandin Fα was not inhibited by atropine, phentolamine and adenosine deaminase and can therefore not be ascribed to an induced secretion of acetylcholine, norepinephrine or adenosine. It is suggested that prostaglandins F act by increasing influx of extracellular Ca2+. Arachidonic acid also inhibited the TSH-induced cyclic AMP accumulation. However this effect was specific for TSH, it was enhanced in the absence of calcium and was not inhibited by methylxanthines or by indomethacin at concentrations which completely block its conversion to prostaglandin Fα. Arachidonic acid action is sustained. This suggests that arachidonic acid inhibits thyroid adenylate cyclase at the level of its TSH receptor and that this effect is not mediated by prostaglandin Fα or any other cyclooxygenase product.  相似文献   

19.
The thromboxane synthetase inhibitor, 9,11-azoprosta-5,13-dienoic acid, blocks both platelet aggregation and the cyclic AMP lowering activity of the prostaglandin endoperoxide PGH2. These data indicate PGH2 must be converted into thromboxane A2 in order to lower cAMP or induce platelet aggregation.  相似文献   

20.
Cholera toxin was found to induce high accumulations of cyclic AMP in the isolated choroid plexus of the rabbit and in the incubation medium. The accumulation showed a characteristic lag phase of at least 30 min and continued for at least 3 hours. Inactivated cholera toxin was unable to increase cyclic AMP levels. There was only a moderate effect of cholera toxin on cyclic AMP “low Km” phosphodiesterase activity in homogenates. The effect of cholera toxin on cyclic AMP levels confirms the existance of a potent cyclic AMP generating system in the choroid plexus which is activated also by β-adrenergic agonists, histamine and prostaglandin E1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号