首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch signaling is involved in a variety of cellular processes, such as cell fate specification, differentiation, proliferation, and survival. Notch‐1 over‐expression has been reported in prostate cancer metastases. Likewise, Notch ligand Jagged‐1 was found to be over‐expressed in metastatic prostate cancer compared to localized prostate cancer or benign prostatic tissues, suggesting the biological significance of Notch signaling in prostate cancer progression. However, the mechanistic role of Notch signaling and the consequence of its down‐regulation in prostate cancer have not been fully elucidated. Using multiple cellular and molecular approaches such as MTT assay, apoptosis assay, gene transfection, real‐time RT‐PCR, Western blotting, migration, invasion assay and ELISA, we found that down‐regulation of Notch‐1 or Jagged‐1 was mechanistically associated with inhibition of cell growth, migration, invasion and induction of apoptosis in prostate cancer cells, which was mediated via inactivation of Akt, mTOR, and NF‐κB signaling. Consistent with these results, we found that the down‐regulation of Notch‐1 or Jagged‐1 led to decreased expression and the activity of NF‐κB downstream genes such as MMP‐9, VEGF, and uPA, contributing to the inhibition of cell migration and invasion. Taken together, we conclude that the down‐regulation of Notch‐1 or Jagged‐1 mediated inhibition of cell growth, migration and invasion, and the induction of apoptosis was in part due to inactivation of Akt, mTOR, and NF‐κB signaling pathways. Our results further suggest that inactivation of Notch signaling pathways by innovative strategies could be a potential targeted approach for the treatment of metastatic prostate cancer. J. Cell. Biochem. 109: 726–736, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
A key step of Wnt signaling activation is the recruitment of β‐catenin to the Wnt target‐gene promoter in the nucleus, but its mechanisms are largely unknown. Here, we identified FoxM1 as a novel target of Wnt signaling, which is essential for β‐catenin/TCF4 transactivation. GSK3 phosphorylates FoxM1 on serine 474 which induces FoxM1 ubiquitination mediated by FBXW7. Wnt signaling activation inhibits FoxM1 phosphorylation by GSK3–Axin complex and leads to interaction between FoxM1 and deubiquitinating enzyme USP5, thereby deubiquitination and stabilization of FoxM1. FoxM1 accumulation in the nucleus promotes recruitment of β‐catenin to Wnt target‐gene promoter and activates the Wnt signaling pathway by protecting the β‐catenin/TCF4 complex from ICAT inhibition. Subsequently, the USP5–FoxM1 axis abolishes the inhibitory effect of ICAT and is required for Wnt‐mediated tumor cell proliferation. Therefore, Wnt‐induced deubiquitination of FoxM1 represents a novel and critical mechanism for controlling canonical Wnt signaling and cell proliferation.  相似文献   

3.
4.
This study focuses on the effect of miR‐129‐5p on docetaxel‐resistant (DR) prostate cancer (PCa) cells invasion, migration and apoptosis. In our study, the expression of CAMK2N1 was assessed by qRT‐PCR in PCa patient tissues and cell lines including PC‐3 and PC‐3‐DR. Cells transfected with miR‐129‐5p mimics, inhibitor, CAMK2N1 or negative controls (NC) were used to interrogate their effects on DR cell invasions, migrations and apoptosis during docetaxel (DTX) treatments. The apoptosis rate of the PCa cells was validated by flow cytometry. Relationships between miR‐129‐5p and CAMK2N1 levels were identified by qRT‐PCR and dual‐luciferase reporter assay. CAMK2N1 was found to be down‐expressed in DR PCa tissue sample, and low levels of CAMK2N1 were correlated with high docetaxel resistance and clinical prediction of poor survival. CAMK2N1 levels were decreased in DR PCa cells treated with DXT. We further explored that up‐regulation of miR‐129‐5p could promote DR PCa cells viability, invasion and migration but demote apoptosis. Involved molecular mechanism studies revealed that miR‐129‐5p reduced downstream CAMK2N1 expression to further impact on chemoresistance to docetaxel of PCa cells, indicating its vital role in PCa docetaxel resistance. Our findings revealed that miR‐129‐5p contributed to the resistance of PC‐3‐DR cells to docetaxel through suppressing CAMK2N1 expression, and thus targeting miR‐129‐5p may provide a novel therapeutic approach in sensitizing PCa to future docetaxel treatment.  相似文献   

5.
The roles of tumor necrosis factor alpha (TNF‐alpha) and its mediators in cellular processes related to intestinal diseases remain elusive. In this study, we aimed to determine the biological role of activated Cdc42‐associated kinase 1 (ACK1) in TNF‐alpha‐mediated apoptosis and proliferation in Caco‐2 cells. ACK1 expression was knocked down using ACK1‐specific siRNAs, and ACK1 activity was disrupted using a small molecule ACK1 inhibitor. The Terminal deoxynucleotidyl transferase biotin‐dUTP Nick End Labeling (TUNEL) and the BrdU incorporation assays were used to measure apoptosis and cell proliferation, respectively. ACK1‐specific siRNA and the pharmacological ACK1 inhibitor significantly abrogated the TNF‐alpha‐mediated anti‐apoptotic effects and proliferation of Caco‐2 cells. Interestingly, TNF‐alpha activated ACK1 at tyrosine 284 (Tyr284), and the ErbB family of proteins was implicated in ACK1 activation in Caco‐2 cells. ACK1‐Tyr284 was required for protein kinase B (AKT) activation, and ACK1 signaling was mediated through recruiting and phosphorylating the down‐stream adaptor protein AKT, which likely promoted cell proliferation in response to TNF‐alpha. Moreover, ACK1 activated AKT and Src enhanced nuclear factor‐кB (NF‐кB) activity, suggesting a correlation between NF‐кB signaling and TNF‐alpha‐mediated apoptosis in Caco‐2 cells. Our results demonstrate that ACK1 plays an important role in modulating TNF‐alpha‐induced aberrant cell proliferation and apoptosis, mediated in part by ACK1 activation. ACK1 and its down‐stream effectors may hold promise as therapeutic targets in the prevention and treatment of gastrointestinal cancers, in particular, those induced by chronic intestinal inflammation.  相似文献   

6.
Accumulating studies have suggested that microRNA‐760 (miR‐760) plays an important role in chemoresistance of various cancer cells. However, whether miR‐760 regulates the chemoresistance of hepatocellular carcinoma (HCC) remains unclear. In this study, we found that miR‐760 was decreased in HCC cell lines, and doxorubicin (Dox) treatment significantly decreased miR‐760 expression in HCC cells. Overexpression of miR‐760 sensitized HCC cells to Dox‐induced cytotoxicity and apoptosis, whereas miR‐760 inhibition showed the opposite effects. Notch1 was predicted as a target gene of miR‐760. miR‐760 negatively regulated Notch1 expression and Notch1/Hes1 signaling. Overexpression of miR‐760 increased PTEN expression and decreased the phosphorylation of Akt. Activation of Notch signaling significantly reversed the inhibitory effect of miR‐760 on Dox‐resistance and abrogated the effect of miR‐760 on the PTEN/Akt signaling pathway in HCC cells. Overall, our results demonstrate that miR‐760 inhibits Dox‐resistance in HCC cells through inhibiting Notch1 and promoting PTEN expression.  相似文献   

7.
Prostate tumorigenesis is associated with loss of PTEN gene expression. We and others have recently reported that PTEN is regulated by Notch‐1 signaling. Herein, we tested the hypothesis that alterations of the Notch‐1 signaling pathway are present in human prostate adenocarcinoma and that Notch‐1 signaling regulates PTEN gene expression in prostate cells. Prostate adenocarcinoma cases were examined by immunohistochemistry for ligand cleaved (activated) Notch‐1 protein. Tumor foci exhibited little cleaved Notch‐1 protein, but expression was observed in benign tissue. Both tumor and benign tissue expressed total (uncleaved) Notch‐1. Reduced Hey‐1 expression was seen in tumor foci but not in benign tissue, confirming loss of Notch‐1 signaling in prostate adenocarcinoma. Retroviral expression of constitutively active Notch‐1 in human prostate tumor cell lines resulted in increased PTEN gene expression. Incubation of prostate cell lines with the Notch‐1 ligand, Delta, resulted in increased PTEN expression indicating that endogenous Notch‐1 regulates PTEN gene expression. Chromatin immunoprecipitation demonstrated that CBF‐1 was bound to the PTEN promoter. These data collectively indicate that defects in Notch‐1 signaling may play a role in human prostate tumor formation in part via a mechanism that involves regulation of the PTEN tumor suppressor gene. J. Cell. Biochem. 107: 992–1001, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Notch signaling is critical to animal development, and its dysregulation leads to human maladies ranging from birth defects to cancer. Although endocytosis is currently thought to promote signal activation by delivering activated Notch to endosome‐localized γ‐secretase, the data are controversial and the mechanisms that control Notch endocytosis remain poorly defined. Here, we investigated the relationship between Notch internalization and signaling. siRNA‐mediated depletion studies reveal that Notch endocytosis is clathrin‐dependent and requires epsin1, the adaptor protein complex (AP2) and Nedd4. Moreover, we show that epsin1 interaction with Notch is ubiquitin‐dependent. Contrary to the current model, we show that internalization defects lead to elevated γ‐secretase‐mediated Notch processing and downstream signaling. These results indicate that signal activation occurs independently of Notch endocytosis and that γ‐secretase cleaves Notch at the plasma membrane. These observations support a model where endocytosis serves to downregulate Notch in signal‐receiving cells.  相似文献   

9.
Podocyte injury and depletion are essential events involved in the pathogenesis of diabetic nephropathy (DN). As a terminally differentiated cell, podocyte is restricted in ‘post‐mitosis’ state and unable to regenerate. Re‐entering mitotic phase will cause podocyte disastrous death which is defined as mitotic catastrophe (MC). Murine double minute 2 (MDM2), a cell cycle regulator, is widely expressed in renal resident cells including podocytes. Here, we explore whether MDM2 is involved in podocyte MC during hyperglycaemia. We found aberrant mitotic podocytes with multi‐nucleation in DN patients. In vitro, cultured podocytes treated by high glucose (HG) also showed an up‐regulation of mitotic markers and abnormal mitotic status, accompanied by elevated expression of MDM2. HG exposure forced podocytes to enter into S phase and bypass G2/M checkpoint with enhanced expression of Ki67, cyclin B1, Aurora B and p‐H3. Genetic deletion of MDM2 partly reversed HG‐induced mitotic phase re‐entering of podocytes. Moreover, HG‐induced podocyte injury was alleviated by MDM2 knocking down but not by nutlin‐3a, an inhibitor of MDM2‐p53 interaction. Interestingly, knocking down MDM2 or MDM2 overexpression showed inhibition or activation of Notch1 signalling, respectively. In addition, genetic silencing of Notch1 prevented HG‐mediated podocyte MC. In conclusion, high glucose up‐regulates MDM2 expression and leads to podocyte MC. Notch1 signalling is an essential downstream pathway of MDM2 in mediating HG‐induced MC in podocytes.  相似文献   

10.
Notch signaling is associated with prostate osteoblastic bone metastases and calcium/calmodulin‐dependent kinase II (CaMKII) is associated with osteoblastogenesis of human mesenchymal stem cells. Here we show that prostate cancer cell lines C4‐2B and PC3, both derived from bone metastases and express Notch‐1, have all four isoforms of CaMKII (α, β, γ, δ). In contrast, prostate cancer cell lines LNcaP and DU145, which are not derived from bone metastases and lack the Notch‐1 receptor, both lack the alpha isoform of CaMKII. In addition, DU145 cells also lack the β‐isoform. In C4‐2B cells, inhibition of CaMKII by KN93 or γ‐secretase by L‐685,458 inhibited the formation of the cleaved form of Notch‐1 thus inhibiting Notch signaling. KN93 inhibited down stream Notch‐1 signaling including Hes‐1 gene expression, Hes‐1 promoter activity, and c‐Myc expression. In addition, both KN93 and L‐685,458 inhibited proliferation and Matrigel invasion by C4‐2B cells. The activity of γ‐secretase was unaffected by KN93 but markedly inhibited by L‐685,458. Inhibition of the expression of α, β, or γ‐isoform by siRNA did not affect Hes‐1 gene expression, however when expression of one isoform was inhibited by siRNA, there were compensatory changes in the expression of the other isoforms. Over‐expression of CaMKII‐α increased Hes‐1 expression, consistent with Notch‐1 signaling being at least partially dependent upon CaMKII. This unique crosstalk between CaMKII and Notch‐1 pathways provides new insight into Notch signaling and potentially provides new targets for pharmacotherapeutics. J. Cell. Biochem. 106: 25–32, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3beta, targets of Akt, regulate cell proliferation and apoptosis. Moreover, FOXO3a, GSK-3beta, and Src are AR regulators and regulate transactivation of AR, mediating the development and progression of PCa. Therefore, we investigated the molecular effects of isoflavone on the Akt/FOXO3a/GSK-3beta/AR signaling network in hormone-sensitive LNCaP and hormone-insensitive C4-2B PCa cells. We found that isoflavone inhibited the phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased the expression of GSK-3beta, leading to the down-regulation of AR and its target gene PSA. We also found that isoflavone inhibited AR nuclear translocation and promoted FOXO3a translocation to the nucleus. By electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we found that isoflavone inhibited FOXO3a binding to the promoter of AR and increased FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive PCa cells. These results suggest that isoflavone-induced inhibition of cell proliferation and induction of apoptosis are partly mediated through the regulation of the Akt/FOXO3a/GSK-3beta/AR signaling network. In conclusion, our data suggest that isoflavone could be useful for the prevention and/or treatment of PCa.  相似文献   

12.
Sodium valproate (VPA) has been recently identified as a selective class I histone deacetylase (HDAC) inhibitor and explored for its potential as an anti‐cancer agent. The anti‐cancer properties of VPA are generally attributed to its HDAC inhibitory activity indicating a clear overlap of these two actions, but the underlying mechanisms of its anti‐tumor effects are not clearly elucidated. The present study aimed to delineate the molecular mechanism of VPA in potentiating cytotoxic effects of anti‐cancer drugs with focus on inhibition of HDAC activity. Using human neuroblastoma cell lines, SK‐N‐MC, SH‐SY5Y, and SK‐N‐SH, we show that non‐toxic dose (2 mM) of VPA enhanced staurosporine (STS)‐induced cell death as assessed by MTT assay, PARP cleavage, hypodiploidy, and caspase 3 activity. Mechanistically, the effect of VPA was mediated by down regulation of survivin, an anti‐apoptotic protein crucial in resistance to STS‐mediated cytotoxicity, through Akt pathway. Knock down of class I HDAC isoforms remarkably inhibited HDAC activity comparable with that of VPA but had no effect on STS‐induced apoptosis. Moreover, MS‐275, a structurally distinct class I HDAC inhibitor did not affect STS‐mediated apoptosis, nor decrease the levels of survivin and Akt. Valpromide (VPM), an amide analog of VPA that does not inhibit HDAC also potentiated cell death in NB cells associated with decreased survivin and Akt levels suggesting that HDAC inhibition might not be crucial for STS‐induced apoptosis. The study provides new information on the possible molecular mechanism of VPA in apoptosis that can be explored in combination therapy in cancer. J. Cell. Biochem. 114: 854–863, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Uveal melanoma (UM) has a high mortality rate due to liver metastasis. The insulin‐like growth factor‐1 receptor (IGF‐1R) is highly expressed in UM and has been shown to be associated with hepatic metastases. Targeting IGF signalling may be considered as a promising approach to inhibit the process of metastatic UM cells. Pristimerin (PRI) has been demonstrated to inhibit the growth of several cancer cells, but its role and underlying mechanisms in the IGF‐1‐induced UM cell proliferation are largely unknown. The present study examined the anti‐proliferative effect of PRI on UM cells and its possible role in IGF‐1R signalling transduction. MTT and clonogenic assays were used to determine the role of PRI in the proliferation of UM cells. Flow cytometry was performed to detect the effect of PRI on the cell cycle distribution of UM cells. Western blotting was carried out to assess the effects of PRI and IGF‐1 on the IGF‐1R phosphorylation and its downstream targets. The results indicated that IGF‐1 promoted the UM cell proliferation and improved the level of IGF‐1R phosphorylation, whereas PRI attenuated the effect of IGF‐1. Interestingly, PRI could not only induce the G1 phase accumulation and reduce the G2 phase induced by IGF‐1, but also could stimulate the expression of p21 and inhibit the expression of cyclin D1. Besides, PRI could attenuate the phosphorylations of Akt, mTOR and ERK1/2 induced by IGF‐1. Furthermore, the molecular docking study also demonstrated that PRI had potential inhibitory effects on IGF‐1R. Taken together, these results indicated that PRI could inhibit the proliferation of UM cells through down‐regulation of phosphorylated IGF‐1R and its downstream signalling.  相似文献   

14.
15.
Myrtucommulone‐A is the active compound derived from Myrtus communis. The molecular targets of myrtucommulone‐A is widely unknown, which impedes its potential therapeutic use. In this study, we demonstrated the cytotoxicity of MC‐A and its potential to induce apoptosis in cancer cells. Myrtucommulone‐A was also found to be antiproliferative and strongly inhibited cancer cell migration. Eighty four apoptotic pathway genes were used to assess the effect of myrtucommulone‐A on cancer cells. Myrtucommulone‐A mediated an increase in apoptotic genes including Fas, FasL, Gadd45a, Tnf, Tnfsf12, Trp53, and caspase 4. The increase in myrtucommulone‐A dose (25 μM versus 6.25 μM) also upregulated the expression of genes, which are involved mainly in apoptosis, regulation of apoptosis, role of mitochondria in apoptotic signaling, cytokine activity, and tumor necrosis factor signaling. Our data indicate that myrtucommulone‐A could be utilized as a potential therapeutic compound with its molecular targets in apoptotic pathways.  相似文献   

16.
Neuroendocrine‐associated phosphatase (NEAP), an atypical dual specificity phosphatase is preferentially expressed in neuroendocrine cells. In this study we found that NEAP, but not NEAP‐(C152S) mutant, evidently reduced epidermal growth factor (EGF) receptor (EGFR) downstream signaling, and impaired cell growth in response to EGF stimulation in PC12 cells. These phenomena were associated with NEAP‐mediated down‐regulation of EGFR mRNA and protein. NEAP had no significant effect on ErbB2/3 expression and phosphorylation levels in response to heregulin, indicating that the negative effect of NEAP on EGFR was selective. We showed that NEAP suppressed EGFR expression via decreasing the EGFR promoter activity and this was mediated through down‐regulations of the Akt pathway and Wilms’ tumor gene product (WT1). Consistent with these results, expression of WT1 reversed the suppressive effect of NEAP on EGFR promoter activity. Additionally, NEAP knockdown by RNA interference enhanced EGFR protein expression and nerve growth factor‐induced differentiation, and an EGFR‐specific inhibitor could reverse the later event. Taken together, our study indicated that NEAP modulates PC12 differentiation via suppression of EGFR expression and signaling.  相似文献   

17.
18.
In this study, we explored the cytotoxic effects of arctigenin, a natural lignan compound, on human hepatocellular carcinoma (HCC) cells and check the involvement of phosphatidylinositol 3‐kinase (PI3‐K)/Akt signaling. HCC cells were treated with different concentrations of arctigenin and cell viability and apoptosis were assessed. Manipulating Akt signaling was used to determine its role in the action of arctigenin. Arctigenin significantly inhibited the viability of HCC cells in a concentration‐dependent manner. Arctigenin induced apoptosis and activation of caspase‐9 and ‐3. Overexpression of a constitutively active Akt mutant blocked arctigenin‐induced apoptosis. Combinational treatment with arctigenin and the PI3‐K inhibitor LY294002 significantly enhanced apoptosis. Arctigenin reduced the expression of Bcl‐xL, Mcl‐1, and survivin and the phosphorylation of mTOR and S6K, which were significantly reversed by overexpression of constitutively active Akt. This is the first report about the anticancer activity of arctigenin in HCC cells, which is mediated by inactivation of PI3‐K/Akt signaling.  相似文献   

19.
Cardiac cell death is one of the major events implicated in doxorubicin‐induced cardiotoxicity, which leads to heart failure. We recently reported that Yes‐associated protein 1 (YAP1) regulates cell survival and apoptosis. However, it is unclear whether YAP1 regulates doxorubicin‐induced cell death in cardiomyocytes. We investigated whether YAP1 is involved in doxorubicin‐induced cell death using H9c2 cardiac cells and mouse heart. In an in vivo study, YAP1 protein expression was significantly decreased in hearts of doxorubicin‐treated mice with increased caspase‐3 activation. Doxorubicin also caused cell death by increasing caspase‐3 activation in H9c2 cells. Doxorubicin reduced YAP1 protein expression and messenger RNA expression accompanied by increased phosphorylation of YAP1 at Ser127. Doxorubicin further increased cell death with increased caspase‐3/7 activation in the absence of YAP1 when compared with doxorubicin or siYAP1 treatment alone. Overexpression of constitutively active YAP1 (YAP1–5SA) using an adenovirus gene transfer technique significantly reversed doxorubicin‐induced cell death by decreasing caspase‐3/7 activation in H9c2 cells. Akt, a potential prosurvival factor, decreased in doxorubicin‐ and YAP1 short interfering RNA (siRNA)‐treated cells. Doxorubicin further significantly decreased Akt protein expression when YAP1 was silenced. Overexpression of YAP1 canceled decreased Akt protein expression induced by doxorubicin treatment in H9c2 cells. In conclusion, these results suggest that doxorubicin‐induced cardiac cell death is mediated in part by down‐regulation of YAP1 and YAP1‐targeted gene, Akt. Modulating YAP1 and its related Hippo pathway on local cardiomyocytes may be a promising therapeutic approach for doxorubicin‐induced cardiotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号