首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
2.

Objective

To evaluate the quantity of Spirulina cultured in seawater, salt-tolerant strains were screened out and their growth and antioxidant accumulation were studied in different salt concentrations

Results

Salt tolerance of five Spirulina strains were investigated with modified Zarrouk medium (with 200–800 mM NaCl). All strains grew well with 400 mM NaCl; their growth rates were almost same as in the control medium. Spirulina strains FACHB-843 (SP843) and FACHB-972 (SP972) had the highest salt tolerance their growth rates in 600 mM NaCl were nearly same as the control. Both strains produced more carotene, phycocyanin, polysaccharides, proline and betaine in 400–600 mM NaCl than the control. Salt stress also induced them to produce higher activities of superoxide dismutase and peroxidase. Total antioxidant capacities of SP843 and SP972 peaked at 600 and 400 mM NaCl, respectively.

Conclusion

Spirulina strains cultured with seawater accumulate more bioactive substances and will have a higher nutritive value.
  相似文献   

3.
An efficient transformation system for high-throughput functional genomic studies of kiwifruit has been developed to overcome the problem of necrosis in Actinidia arguta explants. The system uses Agrobacterium tumefaciens strain EHA105 harbouring the binary vector pART27-10 to inoculate leaf strips. The vector contains neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) (uidA) genes. A range of light intensities and different strengths of Murashige and Skoog (MS) basal salt media was used to overcome the problem of browning and/or necrosis of explants and calli. Callus browning was significantly reduced, resulting in regenerated adventitious shoots when the MS basal salt concentration in the culture medium was reduced to half-strength at low light intensity (3.4 μmol m?2 s?1) conditions. Inoculated leaf strips produced putative transformed shoots of Actinidia arguta on half-MS basal salt medium supplemented with 3.0 mg l?1 zeatin, 0.5 mg l?1 6-benzyladenine, 0.05 mg l?1 naphthalene acetic acid, 150 mg l?1 kanamycin and 300 mg l?1 Timentin®. All regenerated plantlets were deemed putative transgenic by histochemical GUS assay and polymerase chain-reaction analysis.  相似文献   

4.
Bruguiera cylindrica is a major mangrove species in the tropical mangrove ecosystems and it grows in a wide range of salinities without any special features for the excretion of excess salt. Therefore, the adaptation of this mangrove to salinity could be at the physiological and biochemical level. The 3-month-old healthy plantlets of B. cylindrica, raised from propagules were treated with 0 mM, 400 mM, 500 mM and 600 mM NaCl for 20 days under hydroponic culture conditions provided with full strength Hoagland medium. The modulation of various physiochemical changes in B. cylindrica, such as chlorophyll a fluorescence, total chlorophyll content, dry weight, fresh weight and water content, Na+ accumulation, oxidation and antioxidation (enzymatic and non-enzymatic) features were studied. Total chlorophyll content showed very minute decrease at 500 mM and 600 mM NaCl treatment for 20 days and the water content percentage was decreased both in leaf and root tissues with increasing concentration. A significant increase of Na+ content of plants from 84.505 mM/plant dry weight in the absence of NaCl to 543.38 mM/plant dry weight in plants treated with 600 mM NaCl was recorded. The malondialdehyde and the metabolites content associated with stress tolerance (amino acid, total phenols and proline) showed an increasing pattern with increasing NaCl concentration as compared to the control in both leaf and root tissues but the increase recorded in plantlets subjected to 500 mM was much less, indicating the tolerance potential of this species towards 500 mM NaCl. The significant decrease of sugar content was found only in 600 mM NaCl on 20 days of treatment, showing that the process of sugar synthesis was negatively affected but the same process remains less affected at 500 mM NaCl. A slight reduction in ascorbate and glutathione content and very less increase in carotenoid content were observed at 500 mM and 600 mM NaCl stress. Antioxidant enzymes (APX, GPX, SOD and CAT) showed an enhanced activity in all the treatments and the increased activity was more significant in 600 mM treated plants. The result establishes that B. cylindrica tolerates high NaCl concentration, to the extent of 500 mM NaCl without any major inhibition on photosynthesis and metabolite accumulation. Understanding the modulation of various physiological and biochemical changes of B. cylindrica at high levels of NaCl will help us to know the physiochemical basis of tolerance strategy of this species towards high NaCl.  相似文献   

5.
Species of Trichoderma are widely recognized for their biocontrol abilities, but seldom studied collectively, for their plant growth promotion, abiotic stress tolerance and bioremediation properties. Our study is a concentrated effort to establish the potential of native isolate Trichoderma harzianum KSNM (T103) to tolerate biotic (root pathogens) and abiotic stresses [high salt (100–1000 mM); heavy metal (chromium, nickel and zinc: 1–10 mM); pesticides: malathion (100–600 ppm), carbofuran (100–600 ppb)], along with its ability to support plant growth. In vitro growth promotion assays with T103 treated Vigna radiata, Vigna mungo and Hordeum vulgare confirmed ‘non-species specific’ growth promotion effects of T103. At lower metal concentration, T103 treatment was found to completely negate the impact of metal stress [60 % increase in radicle length (RL) with no significant decrease in %germination (%G)]. Even at 10 mM metal, T103 inoculation gave 80 % increase in %G and >50 % increase in RL. In vitro experiments confirmed high metal reduction capacity (47 %-Cr, 35 %-Ni and 42 %-Zn) of T103 at concentrations as high as 4 mM. At maximum residual concentrations of malathion (440 ppm) and carbofuran (100 ppb) reported in agricultural soils, T103 maintained 80 and 100 % survivability, respectively. T103 treatment has improved %G and RL in all three hosts challenged with pesticide. Isolate T103 was found to effectively suppress growth of three major root pathogens: Macrophomina phaseolina (65.83 %) followed by Sclerotium rolfsii (19.33 %) and Fusarium oxysporum (19.18 %). In the light of these observations, native T. harzianum (T103) seems to be a competent biocontrol agent for tropical agricultural soils contaminated with residual pesticides and heavy metals.  相似文献   

6.
Transformation of commercially important indica cultivars remains challenging for the scientific community even though Agrobacterium-mediated transformation protocols for a few indica rice lines have been well established. We report successful transformation of a commercially important restorer line JK1044R of indica rice hybrid JKRH 401. While following existing protocol, we optimized several parameters for callusing, regeneration and genetic transformation of JK1044R. Calli generated from the rice scutellum tissue were used for transformation by Agrobacterium harboring pCAMBIA2201. A novel two tire selection scheme comprising of Geneticin (G418) and Paramomycin were deployed for selection of transgenic calli as well as regenerated plantlets that expressed neomycin phosphotransferase-II gene encoded by the vector. One specific combination of G418 (30 mg l?1) and Paramomycin (70 mg l?1) was very effective for calli selection. Transformed and selected calli were detected by monitoring the expression of the reporter gene uidA (GUS). Regenerated plantlets were confirmed through PCR analysis of nptII and gus genes specific primers as well as dot blot using gus gene specific as probe.  相似文献   

7.
After analyzing tomato plants transformed with GalUR gene for their ascorbic acid contents, it was found that some transgenic lines contained higher levels of ascorbic acid compared to control plants. In the present study, callus induction rate was 50.2 % in the explant and shoot regeneration rate was 51.5 % from the callus with transformation efficiency of 3.0 %. Based on PCR and Southern blot analysis, three independent transformants containing the insert gene were selected. Phenotypic traits of these transgenic progeny were similar to those of control tomatoes. Tomatoes (H15) with high fruit ascorbic acid contents were selected for next generation (GalUR T3) analysis. Transgenic tomatoes with increased ascorbic acid contents were found to be more tolerant to abiotic stresses induced by viologen, NaCl, or mannitol than non-transformed plants. In leaf disc senescence assay, the tolerance of these transgenic plants was better than control plants because they could retain higher chlorophyll contents. Under salt stress of less than 200 mM NaCl, these transgenic plants survived. However, control plants were unable to survive such high salt stress. Ascorbic acid contents in the transgenic plants were inversely correlated with MDA contents, especially under salt stress conditions. The GalUR gene was expressed in H15 tomatoes, but not in control plants. Higher expression levels of antioxidant genes (APX and CAT) were also found in these transgenic plants compared to that in the control plants. However, no detectable difference in SOD expression was found between transgenic plants and control plants. Results from this study suggest that the increase in ascorbic acid contents in plants could up-regulate the antioxidant system to enhance the tolerance of transgenic tomato plants to various abiotic stresses.  相似文献   

8.
Callus from Opuntia streptacantha (cv. Tuna loca), Opuntia megacantha (cv. Rubí reina), and Opuntia ficus-indica (cv. Rojo vigor) were exposed to jasmonic acid (JA) and abiotic stress (drought and UV light) to improve the metabolite production. The callus growth curves, phenolic acids and flavonoids content, antioxidant activity and phenylalanine ammonia lyase (PAL) activity were analyzed under normal and stress conditions. In O. streptacantha callus, the phenolics concentration increased 1.6 to 3 times times in presence of 5% PEG or after irradiation with UV light for 240 min, respectively, while flavonoids triplicate with UV light. A significant increase in antioxidant activity was observed in calli from the three Opuntia species in media with 50 µM JA. The relationships between metabolites/PAL activity, and metabolites/antioxidant activity were analyzed using a surface response methodology. Results showed that PAL activity, induced with PEG and UV, correlated with flavonoids content in O. megacantha and O. ficus-indica calli; PAL activity was related to both flavonoids and phenolics compounds in O. ficus-indica and O. megacantha calli exposed to JA, but only to flavonoids in O. streptacantha callus. In general, the JA stimulated simultaneously the metabolic pathways for phenolics and flavonoids synthesis, while abiotic stress induced mainly flavonoids route. As the stressed Opuntia calli exhibited as high antioxidant activity as cladodes, they are a promising system for research on antioxidant biosynthesis and/or to identify new compounds with antioxidant properties.  相似文献   

9.
UDP glucose 4-epimerase (UGE), an enzyme with significant impacts on sugar metabolism, catalyzes the reversible inter-conversion between UDP-glucose and UDP-galactose. However, very little is known about whether UGE plays a critical role in the accumulation of water-soluble polysaccharide (WSP) and its relationship to abiotic stress tolerance. Here, DoUGE from D. officinale, encoding UGE localized in the cytoplasm, was initially cloned and analyzed. DoUGE exhibited highly tissue-specific expression patterns. The highest expression was in the stems of seedlings and adult plants. The content of WSPs ranged from 168.43 to 416.12 mg g?1 DW from developmental stages S1 to S4, the highest value being in S3. DoUGE was expressed throughout S1 to S4, with a maximum in S3. This trend was similar in three cultivated varieties (T10, T32-5 and T636). There was a positive correlation between DoUGE expression and the content of WSPs (R 2 ?=?0.94; p?<?0.01). Furthermore, promoter analysis showed its possible role in responses to abiotic stresses. Transgenic Arabidopsis thaliana seedlings overexpressing DoUGE accumulated 34.84–44.78% more WSPs, showed 26.24–32.79% more UGE activity, and had a 1.19–1.31-fold higher chlorophyll content than the wild type. Transgenic plants also showed a 50.84 and 34.33% increase in the average content of glucose and galactose, respectively. Transgenic lines growing in half-strength Murashige and Skoog medium containing 150 mM NaCl or 200 mM mannitol displayed enhanced root length and fresh weight, as well as lower proline and malondialdehyde accumulation under salt and osmotic stresses, indicating that the DoUGE gene could be used to improve tolerance to abiotic stress in crops and medicinal or ornamental plants. Our results provide genetic evidence for the involvement of DoUGE in the regulation of WSP content during plant development in D. officinale, as well as in enhanced tolerance to salt and osmotic stresses.  相似文献   

10.
An efficient short term storage protocol was developed for Ansellia africana, a vulnerable medicinal orchid of Africa using encapsulated protocorm-like bodies (PLBs) induced from nodal segments of seedlings with highest response recorded on MS medium supplemented with 10 µM TDZ and 5 µM NAA. The gel matrix containing 3% sodium alginate and 100 mM calcium chloride was the best for the production of viable synthetic seeds. In the present study, the effects of meta-topolin (mT) and its derivatives i.e. meta-Topolin riboside (mTR) and meta-methoxy topolin 9-tetrahydropyran-2-yl (memTTHP) were studied on the viability of synthetic seeds, maintained at different temperatures (4, 8 and 25 °C) for varying duration (15, 30, 45, 60, 75 and 90 days). The highest response percentage (88.21%) of encapsulated PLBs was recorded in those cultivated on medium supplemented with 7.5 µM memTTHP. The alginate beads were successfully stored for 75 days at 8 °C with a recorded conversion frequency of 86.21%. Synergistic effect of auxin (IBA or IAA) and the phenolic elicitor phloroglucinol (PG) were tested on root induction and proliferation. The highest rooting frequency was achieved using 15 µM IBA and 30 µM phloroglucinol resulting in successful acclimatization of the plantlets. The clonal fidelity of the regenerated plantlets was also ascertained using inter-retrotransposon amplified polymorphism and start codon targeted markers which revealed a high degree of genetic homogenity amongst the in vitro raised plants. The study also documents the role of mT, mTR and memTTHP on the regeneration of artificial seed-derived plantlets in orchids. The regeneration protocol, would be helpful in reducing stress on fragmented natural habitats of A. africana and can also be extended to conserve other orchids which are encountering threats of extinction.  相似文献   

11.
Melia azedazach, a plant for forestation, is popular in many countries. Development of triploid M. azedazach varieties will provide additional advantages, such as faster growth, higher biomass, and; therefore, increased productivity. In this study, we aimed to develop triploid M. azedarach L. by immature endosperm tissue culture. After 22 days of initiation of cultures, calli of the endosperm were visible. After 50 days cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg/l NAA and 1.0 mg/l BAP, maximum of callus induction rate from the immature endosperm with seed coat was obtained at 55.9%. The highest frequency of shoot induction from endosperm-derived callus was 98% and average of 16.7 shoots per explant on the medium supplemented with 1.5 mg/l BAP and 0.5 mg/l NAA after 42 days. A single shoot was detached from the multi-shoots and transferred to the rooting medium supplemented with 0.5 mg IBA, inducing root formation with 96.6% and with average of 5.8 roots per plantlet after 28 days. The plantlets transferred to polythene hycotrays containing soil and sand (mixture 1:1) in greenhouse showed 100% survival after transplantation. The endosperm-derived plantlets were 100% triploids as evidenced by flow cytometry analysis. Creating triploid M. azedazach plants by regenerating directly from endosperm (3n) described in this work required only 5 months whereas the traditional method of generating triploids through crossing between tetraploid (4n) and diploid (2n) plants could take up to 12 years.  相似文献   

12.
Salt tolerance mechanisms were studied in three Irano-Turanian halophytic species from the Brassicaceae ??(Lepidium latifolium, L. perfoliatum and Schrenkiella parvula) and compared with the glycophyte Arabidopsis thaliana. According to seed germination under salt stress, L. perfoliatum was the most tolerant species, while L. latifolium and S. parvula were rather susceptible. Contrastingly, based on biomass production L. perfoliatum was more salt sensitive than the other two species. In S. parvula biomass was increased up to 2.8-fold by 100 mM NaCl; no significant growth reduction was observed even when exposed to 400 mM NaCl. Stable activities of antioxidative defense enzymes, nil or negligible accumulation of superoxide anion and hydrogen peroxide, as well as stable membrane integrity in the three halophytes revealed that no oxidative stress occurred in these tolerant species under salt stress. Proline levels increased in response to salt treatment. However, it contributed only by 0.3?2.0% to the total osmolyte concentration in the three halophytes (at 400 mM NaCl) and even less (0.04%) in the glycophyte, A. thaliana (at 100 mM NaCl). Soluble sugars in all three halophytes and free amino acids pool in S. parvula decreased under salt treatment in contrast to the glycophyte, A. thaliana. The contribution of organic osmolytes to the total osmolyte pool increased by salt treatment in the roots, while decreased in halophyte and glycophyte, A. thaliana leaves. Interestingly, this reduction was compensated by a higher relative contribution of K in the leaves of the halophytes, but of Na in A. thaliana. Taken together, biomass data and biochemical indicators show that S. parvula is more salt tolerant than the two Lepidium species. Our data indicate that L. latifolium, as a perennial halophyte with a large biomass, is highly suitable for both restoration of saline habitats and saline agriculture.  相似文献   

13.
Avocado globular somatic embryos were transformed with three binary vectors, pK7FNF2, pK7RNR2 and pK7S*NF2, harboring the marker genes gfp, DsRed and a gfp-gus fusion gene, respectively. GFP and DsRed fluorescence was detected in embryogenic lines growing in selection medium 2 months after Agrobacterium inoculation. The fluorescence signal was maintained thereafter in transgenic calli, as well as in mature somatic embryos. Red fluorescence in pK7RNR2 transgenic lines was higher and more easily observable than GFP fluorescence. Furthermore, calli transformed with pK7S*NF2, harboring gfp-gus, showed higher level of fluorescence than those transformed with pK7FNF2, containing two gfp. To improve plant recovery, maturated transgenic embryos that failed to germinate or showed an underdeveloped shoot were cultured for 4 weeks in a medium with 1 mg l?1 TDZ and 1 mg l?1 BA after partial removal of cotyledons. A 50% of embryos developed one or several shoots on the cut surface. These embryos were cultured for 4 additional weeks in a medium with 1 mg l?1 BA for shoot elongation and then, shoots were grafted in vitro onto seedling rootstocks. Culture of micrografts in solid MS medium supplemented with 1 mg l?1 BA allowed a 60–80% success rate. Young leaves from transgenic plants showed GFP or DsRed fluorescence located in the nucleus. The results obtained indicate that fluorescent marker genes, especially DsRed, could be useful for early selection of transgenic material and optimization of the transformation parameters in avocado. Furthermore, the protocol established allowed the successful recovery of transgenic plants, one of the main limiting steps in avocado transformation.  相似文献   

14.
An effective protocol for plant regeneration from hairy root (HR) via indirect somatic embryogenesis was established in medicinal plant Gentiana macrophylla, a perennial herb in Gentianaceae. On the MS medium containing 0.5–2.5 mg l?1 2,4-dichlorophenoxyacetic acid (2,4-D) or 2,4-D plus benzylaminopurine (BAP), all the HR explants produced embryogenic calli (ECs). After transfer to plant growth regulator (PGR)-free MS medium, up to 94% of the ECs produced somatic embryos (SEs) of various stages, including cotyledonary SEs. When the calli with cotyledonary SEs were transferred to PGR-free MS medium, the cotyledonary SEs on the calli developed into plantlets (1–12 ones per callus). The cotyledonary SEs showed two types: solitary and fasciculate. The former developed into single plantlets and the latter into fasciculate ones. After transplantation into soil, a half of the plantlets survived, and one of the survivors flowered without fruiting. Morphologically, about 30% plantlets appeared similar to the wild type (WT)-plants, and 70% of them displayed wrinkled dark green leaves with relatively small and dense stomata, long and thick main root with dense lateral roots. The biomass of roots and leaves of the plantlets increased by five- and one-fold, respectively, and the content of gentiopicroside of their roots raised by 72.4%, in comparison with WT-plants. Polymerase chain reaction revealed that the rolC gene integrated into HR genome still existed in the regenerated plants. This study offers us an effective method and material for producing gentiopicroside or other medicinal compounds.  相似文献   

15.
Piriformospora indica, a root endophytic fungus, has been reported to promote growth of many plants under normal condition and allow the plants to survive under stress conditions. However, its impact on an important medicinal plant Aloe vera L. has not been well studied. Therefore, this study was undertaken to investigate the effect of P. indica on salinity stress tolerance of A. vera plant. P. indica inoculated and non-inoculated A. vera plantlets were subjected to four levels of salinity treatment- 0, 100, 200 and 300 mM NaCl. The salinity stress decreased the ability of the fungus to colonize roots of A. vera but the interaction of A. vera with P. indica resulted in an overall increase in plant biomass and greater shoot and root length as well as number of shoots and roots. The photosynthetic pigment (Chl a, Chl b and total Chl) and gel content were significantly higher for the fungus inoculated A. vera plantlets, at respective salinity concentrations. Furthermore, the inoculated plantlets had higher phenol, flavonoid, flavonol, aloin contents and radical scavenging activity at all salinity concentrations. The higher phenolic and flavonoid content may help the plants ameliorate oxidative stress resulting from high salinity.  相似文献   

16.
17.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

18.
Hyperhydricity symptoms are common and significant during the in vitro culture of Dianthus chinensis L. and greatly affect the micropropagation and regeneration of cultured plantlets. However, effective measures for preventing such abnormalities have not been developed for this species. Silver nitrate (AgNO3) has been shown to revert hyperhydric plantlets to a normal state. Nevertheless, the effect of AgNO3 on the prevention of hyperhydricity and the underlying mechanisms remain unclear. In the present study, 98.7% of the Dianthus chinensis L. plantlets cultured in a hyperhydricity induction medium (HIM) developed symptoms of hyperhydricity; however, hyperhydricity symptoms were inhibited to different degrees when D. chinensis L. plantlets were cultured in HIM supplemented with various concentrations of AgNO3. In particular, approximately 97% of the D. chinensis L. plantlets grew normally and did not show any symptoms of hyperhydricity when cultured in HIM supplemented with 30 μmol L?1 AgNO3. Compared with the plantlets cultured in HIM alone, the plantlets cultured in HIM containing AgNO3 displayed dramatic decreases in water content, ethylene content, and reactive oxygen species (ROS) production (particularly regarding H2O2 accumulation in guard cells) and showed increased antioxidant enzyme activity, stoma aperture, and water loss. These changes not only prevented excess water from accumulating in the tissues of plantlets but also improved the antioxidant capacity of plantlets, ultimately resulting in the prevention of hyperhydricity.  相似文献   

19.
The physiological and anatomical responses of different concentrations (0.0, 0.5, 1.0, 2.0 and 4.0 mM sodium silicate) of Si foliar-application in improving the chilling tolerance of Dendrocalamus brandisii plantlets were investigated. The Si-supplemented D. brandisii plantlets exhibited better chilling tolerance, associated with the enhancement of photosynthetic pigment and soluble sugar and starch content, increasing CAT and SOD activities and decreasing MDA and H2O2 level, as well as thicker leaf blades and mesophyll tissues. Furthermore, distinct changes in phytolith morphology were observed, including formation of a new phytolith morphotype (dumb-bell with nodular shark), significantly higher frequency of elongated phytoliths, and the increased length of elongated and elliptical phytoliths. Results indicated the physiological and anatomical response showed weak positive linkage with increasing amount of silicon applied, and the 1.0 mM sodium silicate on D. brandisii plantlet leaves was the most effective treatment in enhancing chilling tolerance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号