首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin D2 and vitamin D3 were isolated from Medicago sativa (alfalfa) grown under field and laboratory conditions and then irradiated with ultraviolet light. The vitamins were identified by ultraviolet absorption, mass spectroscopy, and comparison with synthetic standards on several chromatographic systems. Sun-cured, field-grown alfalfa contained vitamin D2 at a concentration of 48 ng/g (1920 IU/kg) and vitamin D3 at 0.63 ng/g (25 IU/kg). Laboratory-grown alfalfa, artificially irradiated, contained vitamin D2 at a concentration of 80 ng/g and vitamin D3 at 1.0 ng/g. Therefore, the presence of vitamin D2, as well as vitamin D3, has unequivocally been demonstrated in alfalfa plant tissue.  相似文献   

2.
The chemical synthesis, spectral characterization, and biological activity of vitamin D5 in vitamin D-deficient rats is reported. Vitamin D5 is about 180-fold less active than vitamin D3 in calcification of rachitic cartilage and about 100- to 200-fold less active in induction of bone-calcium mobilization. In stimulation of intestinal-calcium transport, vitamin D5 is about 80-fold less active than vitamin D3. Vitamins D2 and D3 appear to be equiactive in all three responses when low doses are administered.  相似文献   

3.
The isolation and identification of two metabolites of vitamin D2 found in mammalian and avian species are reported. They are 24-hydroxyvitamin D2 and 24,25-dihydroxyvitamin D2. Their existence suggests that 24-hydroxylation occurs in a sterospecific manner in the 24R position and adds further support to the theory that vitamin D2 metabolism qualitatively parallels that of vitamin D3.  相似文献   

4.
The apparent plasma concentration of vitamin D binding protein (DBP) in an iguanian lizard, Pogona barbata, and the affinity of this protein for 25-hydroxyvitamin D3 (25(OH)D3), 25-hydroxyvitamin D2 (25(OH)D2), and 1,25-dihydroxyvitamin D3 (1,25(OH)D3) was found to resemble more closely that of the domestic hen than that of the human. The characteristics of Pogona DBP, the pattern of vitamin D metabolites derived from injected radioactive vitamin D3 and the plasma concentrations of endogenous 25-hydroxyvitamin D (25(OH)D) in a range of iguanian lizards have been examined. The findings suggest that 25-hydroxyvitamin D (25(OH)D) is the major metabolite of vitamin D, and that it may represent the storage form of vitamin D in these species in the same way as in mammals. High concentrations of vitamin D within iguanian embryos and egg yolks suggest a role for this compound in embryogenesis in these species, and perhaps indicates that there is a mechanism for vitamin D delivery to eggs comparable to that found in the domestic chicken.  相似文献   

5.
Transdermal delivery of therapeutic amounts of vitamin D3 is proposed to overcome its variable oral bioavailability, especially for people who suffer from fat malabsorption. The main challenge for this delivery route is to overcome the barrier properties of skin, especially for very lipophilic compounds such as vitamin D3. In this study, the effect of different penetration enhancers, such as oleic acid, dodecylamine, ethanol, oleic acid in propylene glycol, isopropyl myristate, octyldodecanol, and oleyl alcohol in propylene glycol were evaluated in vitro for their effectiveness in delivering vitamin D3 through polyamide filter, polydimethylsiloxane membrane, and porcine skin. A diffusion cell was used to study the transdermal permeability of vitamin D3. Ointment formulations of vitamin D3 were prepared containing the most widely used penetration enhancers, oleic acid, and dodecylamine. The ointment containing oleic acid as chemical penetration enhancer did not improve delivery compared to control. On the other hand, the formulation containing dodecylamine as a penetration enhancer did improve the transdermal delivery of vitamin D3. However, statistical significance and an amount high enough for nutritional supplementation purposes were reached only when the skin was pretreated with 50% ethanol. In these conditions, the ointment delivered an amount of 760-ng vitamin D3 per cm2 of skin. The research shows promise that transdermal delivery could be an effective administration route for vitamin D3 when ethanol and dodecylamine are used as penetration enhancers.KEY WORDS: dodecylamine, ethanol, penetration enhancer, transdermal delivery, vitamin D3  相似文献   

6.
The biological activity of 24,24-difluoro-25-hydroxyvitamin D3 was assessed using elevation of serum phosphorus and healing of rickets of vitamin D-deficient rats. Various levels of 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3 were administered daily for 2 weeks in the dose range of 6.5 to 3250 pmol after feeding rats a low phosphorus, vitamin D-deficient diet for 3 weeks. Vitamin D3 was concurrently tested at dose levels of 650 and 3250 pmol. 24,24-Difluoro-25-hydroxyvitamin D3 is approximately equipotent with 25-hydroxyvitamin D3 in stimulation of growth, mineralization of rachitic bone, and elevation of serum inorganic phosphorus. Radiological manifestations of rickets were also equally improved by 24,24-difluoro-25-hydroxyvitamin D3 and 25-hydroxyvitamin D3. Compared with vitamin D3, these compounds were approximately 5 to 10 times more active in mineralization using rats on a low phosphorus, vitamin D-deficient diet. The functional role, if any, for 24-hydroxylated vitamin D compounds, such as 24,25-dihydroxyvitamin D3, therefore remains obscure. It appears that vitamin D compounds that cannot be 24-hydroxylated evoke no disorder in bone mineralization.  相似文献   

7.
8.
Summary After injection of radiolabeled 1,25 (OH)2 vitamin D3, nuclear concentration of radioactivity is observed in parenchymal cells of the parathyroid gland in pregnant, adult male, and 10-day male neonatal rats. In competition studies with unlabeled 1,25 (OH)2 vitamin D3, but not with 25 (OH) vitamin D3, nuclear uptake is prevented. Experiments with 3H 25 (OH) vitamin D3, in contrast to 3H 1,25 (OH)2 vitamin D3, do not show nuclear concentration in cells of the parathyroid. The results of the autoradiographic studies suggest the presence of receptors for a direct effect of 1,25 (OH)2 vitamin D3 on the parathyroid gland for modulation of parathyroid hormone secretion.  相似文献   

9.
To evaluate possible functional roles for 24,25-dihydroxyvitamin D3, 24,24-difluoro-25-hydroxyvitamin D3 has been synthesized and shown to be equally as active as 25-hydroxyvitamin D3 in all known functions of vitamin D. The use of the difluoro compound for this purpose is based on the assumption that the C-F bonds are stable in vivo and that the fluorine atom does not act as hydroxyl in biological systems. No 24,25-dihydroxyvitamin D3 was detected in the serum obtained from vitamin D-deficient rats that had been given 24,24-difluoro-25-hydroxyvitamin D3, while large amounts were found when 25-hydroxyvitamin D3 was given. Incubation of the 24,24-difluoro compound with kidney homogenate prepared from vitamin D-replete chickens failed to produce 24,25-dihydroxyvitamin D3, while the same preparations produced large amounts of 24,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. Kidney homogenate prepared from vitamin D-deficient chickens produced 24,24-difluoro-1,25-dihydroxyvitamin D3 from 24,24-difluoro-25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 from 25-hydroxyvitamin D3. In binding to the plasma transport protein for vitamin D compounds, 24,24-difluoro-25-hydroxyvitamin D3 is less active than 25-hydroxyvitamin D3 and 24R,25-dihydroxyvitamin D3. In binding to the chick intestinal cytosol receptor, 24,24-difluoro-25-hydroxyvitamin D3 is more active than 25-hydroxyvitamin D3 which is itself more active than 24R,25-dihydroxyvitamin D3. The 24,24-difluoro-1,25-dihydroxyvitamin D3 is equal to 1,25-dihydroxyvitamin D3, and both are 10 times more active than 1,24R,25-trihydroxyvitamin D3 in this system. These results provide strong evidence that the C-24 carbon of 24,24-difluoro-25-hydroxyvitamin D3 cannot be hydroxylated in vivo, and, further, the 24-F substitution acts similar to H and not to OH in discriminating binding systems for vitamin D compounds.  相似文献   

10.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

11.
  • 1.1. Comparative studies on the possible origin of extremely high contents of vitamin D3 in some kinds of fish liver were performed.
  • 2.2. Neither photochemical formation of vitamin D3 in fish skin by solar radiation of 7-dehydrocholesterol (7-DHC) nor nonphotochemical enzymatic formation of vitamin D3 from 7-DHC in fish liver was demonstrated as the origin of vitamin D3.
  • 3.3. On the other hand, when bastard halibuts and carps were farmed from fingerlings to adults with feedstuff's containing vitamin D2 or D3, significant amounts of the vitamins were accumulated in the fish liver.
  • 4.4. The contents of vitamins D2 and D3 in bastard halibut liver increased according to the duration of farming and dose responses of the vitamins in carp liver were observed.
  • 5.5. Significant amounts of vitamins D2 and D3 in phytoplankton and vitamin D3 in Zooplankton and small fish were detected.
  • 6.6. Therefore, we have concluded that the most probable origin of vitamin D3 in fish liver is a result of food chains from plankton.
  相似文献   

12.
A polar metabolite of vitamin D3 has been produced in vitro from either 1,25-dihydroxyvitamin D3 incubated with kidney homogenate from vitamin D-supplemented chickens or from 25,26-dihydroxyvitamin D3 incubated with vitamin D-deficient chicken kidney homogenate. This compound was isolated in pure form and identified as 1,25,26-trihydroxyvitamin D3 by ultraviolet absorption spectrophotometry and mass spectrometry. Furthermore, its periodate cleavage product comigrates with synthetic 1α-hydroxy-25-keto-27-norvitamin D3 on high-performance liquid chromatography. The 1,25,26-trihydroxyvitamin D3 is 0.1-0.01 as active as 1,25-dihydroxyvitamin D3 in the stimulation of intestinal calcium transport and bone calcium mobilization.  相似文献   

13.
High-pressure liquid chromatography capable of resolving all known vitamin D metabolites and a sensitive competitive binding protein assay specific for 1α,25-dihydroxyvitamin D3 were used to assay the blood of rats dosed with ethanol, 1α-hydroxyvitamin D3, 24R-hydroxy-25-fluorovitamin D3, or 1α-hydroxy-25-fluorovitamin D3. Compared to the ethanoldosed animals, the blood of rats dosed with 1α-hydroxyvitamin D3 had increased levels of 1α,25-dihydroxyvitamin D3; but those dosed with the fluorinated vitamins did not. Instead, their blood contained a compound that cochromatographs with 1α,24R-dihydroxyvitamin D3 on high-pressure liquid chromatography and binds to the 1,25-dihydroxyvitamin D3 receptor proteins. 1α,24R-Dihydroxyvitamin D3 binds as well as 1α, 25-dihydroxyvitamin D3 to the chick-intestinal cytosol receptor protein for 1α,25-dihydroxyvitamin D3; whereas 1α,24S-dihydroxyvitamin D3 binds only one-tenth as well as 1α,25-dihydroxyvitamin D3. Thus it appears that in vivo, the fluorinated vitamin D compounds are converted to a compound likely to be 1α,24R-dihydroxy-25-fluorovitamin D3 and that may rival the potency of 1α,25-dihydroxyvitamin D3.  相似文献   

14.
Our laboratory has recently demonstrated that 1,25-dihydroxyvitamin D3(1,25(OH)2D3) rapidly stimulated membrane polyphosphoinositide breakdown and increased intracellular calcium, as well as activated protein kinase C (PKC) in vitamin D-sufficient rat colonocytes. These effects of 1,25(OH)2D3 were, however, lost in vitamin D-insufficient rats and restored by the in vivo repletion of 1,25(OH)2D3. In the present studies we have examined the ability of 1,25(OH)2D3 to stimulate the phosphorylation of colonic membrane proteins in intact D-sufficient cells. In addition, we investigated the effects of vitamin D status on the phosphorylation of these membrane proteins in broken cell preparations. These studies demonstrated that 1,25(OH)2D3 increased the phosphorylation of at least two colonic membrane proteins with apparent molecular weights of 42,000 (pp42) and 48,000 (pp48) in intact cells of vitamin D-sufficient rats. Moreover, in vitamin D-sufficient rats, treatment of colonocytes with 1,25(OH)2D3 or 12-Otertradecanoyl phorbol 13-acetate (TPA), a known activator of PKC, significantly increased the phosphorylation of pp42 and pp48 in broken cell preparations. The kinetics of these phosphorylations in response to 1,25(OH)2D3 were both rapid and transient. In addition, PKC19–36, a specific PKC inhibitor, decreased the phosphorylation of pp42 and pp48, whereas okadaic acid (OA), a type 1 and 2A protein phosphatase inhibitor, further augmented their phosphorylation in response to 1,25(OH)2D3. The isoelectric points of pp42 and pp48 were 5.79 and 5.97, respectively, and both were predominantly phosphorylated on threonine residues. In contrast to our findings in colonocytes from vitamin D-sufficient animals, basal phosphorylation of pp42 and pp48 were increased in membranes prepared from vitamin D-insufficient rats. Moreover, these phosphorylations failed to change in response to 1,25(OH)2D3-treatment of colonocytes from vitamin D-insufficient rats. The basal phosphorylation of each of these proteins was restored to control levels, as was their ability to respond to the direct addition of 1,25(OH)2D3 following the in vivo repletion of vitamin D-insufficient rats with this secosteroid. In summary, we have identified two acidic membrane proteins from rat colonocytes that are phosphorylated in both intact and broken cell preparations in response to 1,25(OH)2D3 treatment, an event modulated by vitamin D status and mediated, at least in part, by PKC. © 1995 Wiley-Liss, Inc.  相似文献   

15.
《Organogenesis》2013,9(2):52-54
To characterize actions of vitamin D3 on metanephroi transplanted from rat embryos to adult recipients, we incubated metanephroi with or without 0.01, 0.1 or 1 ug/ml vitamin D3, 25-hydroxyvitamin D3 [25(OH)D3] or 1, 25-hydroxyvitamin D3 [1,25(OH)2D3] prior to implantation. The number of glomeruli in developed metanephroi three weeks post-transplantation that had been incubated with 1.0 ug/ml vitamin D3 was increased relative to the number in metanephroi that were not incubated with vitamin D3 (control), an effect that was not recapitulated by administration of vitamin D3 directly to hosts at the time of transplantation. Incubation of metanephroi with 1.0 ug/ml vitamin D3 also enhanced inulin clearances of metanephroi measured at 12 weeks post-transplantation. The hydroxylated derivative of vitamin D3, 25(OH)D3, increased glomerulus number when applied at 0.01 ug/ml but not at higher concentrations, while the twice-hydroxylated derivative 1,25(OH)2D3, failed to increase glomerulus number at any concentration tested. We conclude that incubation with vitamin D3 prior to implantation enhances inulin clearance possibly by increasing the number of glomeruli that develop post-transplantation.

Our findings suggest the vitamin D3 effect is mediated locally.  相似文献   

16.
To characterize actions of vitamin D3 on metanephroi transplanted from rat embryos to adult recipients, we incubated metanephroi with or without 0.01, 0.1 or 1 ug/ml vitamin D3, 25-hydroxyvitamin D3 [25(OH)D3] or 1, 25-hydroxyvitamin D3 [1,25(OH)2D3] prior to implantation. The number of glomeruli in developed metanephroi three weeks post-transplantation that had been incubated with 1.0 ug/ml vitamin D3 was increased relative to the number in metanephroi that were not incubated with vitamin D3 (control), an effect that was not recapitulated by administration of vitamin D3 directly to hosts at the time of transplantation. Incubation of metanephroi with 1.0 ug/ml vitamin D3 also enhanced inulin clearances of metanephroi measured at 12 weeks post-transplantation. The hydroxylated derivative of vitamin D3, 25(OH)D3, increased glomerulus number when applied at 0.01 ug/ml but not at higher concentrations, while the twice-hydroxylated derivative 1,25(OH)2D3, failed to increase glomerulus number at any concentration tested. We conclude that incubation with vitamin D3 prior to implantation enhances inulin clearance possibly by increasing the number of glomeruli that develop post-transplantation.Our findings suggest the vitamin D3 effect is mediated locally.Key Words: kidney, organogenesis, transplantation  相似文献   

17.
An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2D by 1α‐hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2D3. We show that myoblasts not only responded to 1,25(OH)2D3, but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α‐hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2D3. J. Cell. Physiol. 231: 2517–2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

18.
19.
Summary Liver cells were prepared from rats fed a rachitogenic diet to investigate the hepatic metabolism of [ — 1,2 —3H2] vitamin D3. Rat hepatocytes suspended in Hanks medium rapidly took up labeled vitamin D3 from the incubation medium and converted this sterol to various metabolites, including 25-hydroxy vitamin D3 (25-OH-D3). There was a steady increment in the cellular production of 25-OH-D3 and of the more polar metabolites of vitamin D3 over 3 hr of incubation as determined by thin layer chromatography. Neither the addition of cyclic nucleotides or dexamethasone to, nor the removal of calcium or phosphate from the medium resulted in changes in the rate of conversion of vitamin D3 to its products. Rats pretreated with sodium diphenylhydantoin converted labeled vitamin D3 to its metabolites at the same rate as control rats. These data indicate that isolated liver cells retain the capacity for vitamin D3 hydroxylation, but suggest that the rate of this process does not undergo rapid changes in response to metabolic stimulation.Recipient of Research Career Development Award 1 K04 HL-00089.  相似文献   

20.
《Endocrine practice》2012,18(3):399-402
ObjectiveTo examine the effect of 50 000 IU-vitamin D2 supplementation in a clinical setting on serum total 25-hydroxyvitamin D (25[OH]D), 25-hydroxyvitamin D2 (25[OH]D2), and 25-hydroxyvitamin D3 (25[OH]D3).MethodsThis retrospective cohort study was performed in an urban tertiary referral hospital in Boston, Massachusetts. Patients who had been prescribed 50 000 IU vitamin D2 repletion and maintenance programs were identified through a search of our electronic medical record. Baseline and follow-up total serum 25(OH)D, 25(OH)D2, and 25(OH)D3 levels were compared.ResultsWe examined the medical records of 48 patients who had been prescribed 50 000 IU vitamin D2 in our clinic. Mean ± standard deviation baseline total 25(OH) D was 31.0 ± 10.6 ng/mL and rose to 48.3 ± 13.4 ng/mL after treatment (P <.001). 25(OH)D2 increased from 4.2 ± 4.3 ng/mL to 34.6 ± 12.3 ng/mL after treatment (P <.001), for an average of 158 days (range, 35-735 days). Serum 25(OH)D3 decreased from 26.8 ± 10.8 ng/mL to 13.7 ± 7.9 ng/mL (P <.001).ConclusionsFifty thousand IU vitamin D2 repletion and maintenance therapy substantially increases total 25(OH)D and 25(OH)D2 despite a decrease in serum 25(OH)D3. This treatment program is an appropriate and effective strategy to treat and prevent vitamin D deficiency.(Endocr Pract. 2012;18:399-402)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号