首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Paired, sac-like and typically large opisthonotal glands (syn. oil glands), mainly considered for chemical protection and communication, characterize the so-called 'glandulate Oribatida' which include the Parhyposomata, Mixonomata, Desmonomata and Brachypylina but also the Astigmata. Among these groups distinct evolutionary trends affect the morphology of glands and their secretion profiles, thereby rendering them highly informative characters with phylogenetic significance. One striking tendency, convergently occurring in a few glandulate groups, leads to the degeneration or even complete regression of opisthonotal glands. In this study, a first example of coherent evolutionary steps towards opisthonotal gland degeneration is described by using desmonomatan Camisiidae as a model: Opisthonotal glands in representatives of genus Platynothrus still show morphologically and chemically ancient conditions with fairly-well developed glandular reservoirs. Secretion patterns mainly consist of a characteristic set of terpenes and aromatics ('astigmatid compounds') as found in outgroups such as desmonomatan Trhypochthoniidae. Progressive states of regression of opisthonotal glands, along with a reduction of component-richness and amounts of secretions, occur in representatives of Heminothrus and, more conspicuously, in species of Camisia , most likely indicating a consistent evolutionary trend. This trend towards opisthonotal gland atrophy may be due to novel alternative and cheap strategies of passive defense in more-derivative camisiids – such as mechanical protection by encrustation of the cuticle – that possibly compensate for the lack of chemical defenses.  相似文献   

2.
Summary In the intact, in vitro frog skin, isoproterenol (ISO) stimulates and amiloride-insensitive increase in short-circuit current (SCC) that can be localized to the exocrine glands and is associated with secretion of chloride. To determine which cells in the glands respond to stimulation we measured the intracellular electrolyte concentrations of the various cell types of the mucous and seromucous glands of the skin using freeze-dried cryosections and electron microprobe analysis. In the resting state, the various cell types of the glands have intracellular electrolyte concentrations similar to the epithelial cells of the skin. Exposure to amiloride (10–4 m) has little effect on the concentration of Na and Cl in the cells of the glands. The effect of isoproterenol has two distinct phases. Analysis of glands in tissues frozen at the peak of the SCC response (13 min after addition of isoproterenol) shows that the only significant change is an increase in Na and Ca in a group of cells at the ductal pole of the acini of both gland types. These are termed gland cells. The duct cells and cells that secrete macromolecules did not show any significant changes at this timepoint. In the gland cells, after a one-hour exposure to isoproterenol the Na concentration is at prestimulation levels while Cl drops. There is also a smaller drop in Cl in the duct and skin epithelial cells. Ouabain, which can completely block the isoproterenol SCC response, has little short-term effect on Na and Cl in the control gland but accentuates the gain of Na and drop in Cl in the isoproterenol-treated condition. Bumetanide and, to a lesser extent, furosemide, also blocks the isoproterenol SCC response and causes a further drop in Cl. The results provide indirect evidence that a major portion of the ionic component of the gland secretion is produced by a distinct group of cells separate from those producing the macromolecular component and that the mechanism of secretion involves a Na:Cl coupled transport system linked to the activity of the basolateral Na pump.  相似文献   

3.
In the notostigmophoran centipedes, two pairs of vesicular glands have evolved. These paired glands are situated in the first and second trunk segment and open via cuticular ducts in the upper part of the particular pleura. The vesicular glands of Scutigera coleoptrata were investigated using light and, for the first time, electron microscopical methods. The glands consist of wide sac‐like cavities that often appear vesicular. The epithelia of both glands are identically structured and consist of numerous glandular units. Each of these units consists of four different cells: a single secretory cell, a small intermediary cell, and one proximal and one distal canal cell. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cells. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the ultrastructure of glandular units of the vesicular glands is comparable to that of the glandular units of other epidermal glands in Chilopoda and Diplopoda, although the glands look completely different in the light microscope. Thus, it is likely that the vesicular glands and epidermal glands share the same ground pattern. With regard to specific differences in the cuticular lining of the intermediary cells, a common origin of epidermal glands in Myriapoda and Hexapoda is not supported. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Many exocrine products used by ground beetles are pheromones and allomones that regulate intra- and interspecific interactions and contribute to their success in terrestrial ecosystems. This mini-review attempts to unify major themes related to the exocrine glands of carabid beetles. Here we report on both glandular structures and the role of secretions in carabid adults, and that little information is available on the ecological significance of glandular secretions in pre-imaginal stages.  相似文献   

5.
Abstract. Workers of Crematogaster inflata possess the largest metapleural glands (relative to body size) known among ants, with reservoirs extending anteriorly up to the junction between the pro‐ and the mesothorax, and with over 1400 secretory cells on both sides together. This large secretory capacity is related to the gland's defensive function, which, in members of this species, is directed against larger arthropod and vertebrate enemies, and apparently not against microorganisms, in contrast to other ants, where the gland produces antibiotics. The gland is not equipped with any direct musculature. Secretion release is probably caused by contraction of the oblique longitudinal thorax muscles or by passive expulsion caused by external pressure.  相似文献   

6.
Zusammenfassung Der Hohlraum des Kugelhaares von Nemastoma bildet im basalen Teil Ausbuchtungen mit tubulären Strukturen, die mit 40–50 von proximal nach distal ziehenden Kanälen in Verbindung stehen.Nahe der Haarspitze befindet sich ein hohler Schirm mit zahlreichen Chaetoiden. Dicht unter ihm öffnen sich die Kanäle nach außen, und zwar derartig, daß ihr zentrad gelegener Teil der Wand den Schirmstiel bildet, während sich ihr peripherwärts gelegener Wandteil in einzelne Streben aufgliedert. Diese bilden nach Erreichen des Schirmbodens zwischen sich und dem Schirmstiel einen großen Hohlraum, der von einem klebrigen Sekret angefüllt und, zusammen mit dem Schirm, auch umhüllt wird.
The fine structure of spezialized setae on the pedipalpi of nemastoma (Opiliones, Nemastomatidae)
Summary The cavity of the seta on the pedipalpi of Nemastoma shows protrusions with tubular structures, which are connected with 40–50 channels proceeding from proximal towards distal.Close by the tip of the seta there is a hollow umbrella with numerous secondary chetae. Bight underneath, each channel is widened in a way that the central part of the wall builds the stalk of the umbrella, whereas the more peripheral part of the wall is split in single struts. Both struts fused with the umbrella and its stalk form a large cavity. This cavity is filled with a viscid droplet and enveloped as well together with the umbrella. — The possible meaning of these structures is discussed.
Frl. A. Hennig bin ich für ihre gewissenhafte technische Mitarbeit sehr zu Dank verpflichtet.  相似文献   

7.
Salamanders in the family Plethodontidae exhibit a unique tail‐straddle walk during courtship that can include the use of sexually dimorphic mental and caudal courtship glands. This study presents novel histological and fine structure data on mental glands and caudal courtship glands in Plethodon mississippi, Desmognathus conanti and Eurycea quadridigitata using both light microscopy and scanning electron microscopy. This study represents the first use of scanning electron microscopy to observe these glands. Both mental and caudal courtship glands were observed to vary seasonally in gland diameter and histology according to the breeding season of each species. Morphological variation was observed across the three species studied in both clustering and relative size of the glands compared to neighbouring mucous and granular glands. Hypertrophied mental glands are larger than mucous or granular glands in all species, but relationships among caudal courtship glands and other skin glands vary among species. In E. quadridigitata, active caudal courtship glands are larger than mucous and granular glands, but in D. conanti, caudal courtship glands are similar in size to granular glands and larger than mucous glands. In P. mississippi, caudal courtship glands are scattered among significantly larger granular glands and are similar in size to mucous glands.  相似文献   

8.
Dilek Durak 《Acta zoologica》2008,89(3):193-199
One of the general defining characters of the Heteroptera is the presence of metathoracic scent glands (MTG). Using scanning electron microscopy, the morphology of the MTG of Dolycoris baccarum (Linnaeus 1758) (Heteroptera: Pentatomidae) was studied. The MTG belong to the diastomian type. The two glandular pores located between the mesothoracic and metathoracic coxae are associated with 'mushroom-like' structures. The MTG are composed of a reservoir and a pair of lateral glands is connected to the reservoir by a duct. A groove-like structure extends downwards from the ostiole. While this structure is long and wide, its ostiole is oval. Extracts of the volatile fractions from male and female MTG secretions were analysed by capillary gas chromatography–mass spectrometry (GC-MS) and exhibited a typical pentatomid composition. Seventeen chemical compounds were detected in female secretions, whereas 13 chemical compounds were detected in the male secretions. Most chemical compounds were similar between the sexes but were different in their quantities. In this regard, the compounds identified were investigated and the biological functions of the glandular secretions were discussed. In the analyses of the MTG of females of D. baccarum , tridecane (50.97%) was a major odour component and (Z,Z)-4,16-octadecadien-1-ol acetate (0.02%) was a minor odour component. In males, tridecane (50.80%) was a major odour component and 1,2-benzenedicarboxylic acid (0.02%) was a minor odour component.  相似文献   

9.
Abstract In this paper we focus on the occurrence and morphological aspects of exocrine glands in several bee species. Morphology of head labial, mandibular, Dufour, and abdominal tegumentar glands was investigated under light microscopy, scanning electron microscopy and transmission electron microscopy. Most of such glands present cells with cytoplasm homogeneous and acidophilic, or contain small apparently empty vacuoles. The cytoplasm cells' ultrastructure showed a well developed smooth endoplasmic reticulum, many polymorphic mitochondria, rare Golgi, lipid droplets, myelin figures, and many basal and apical plasma membrane infoldings. All these results are discussed in the text.  相似文献   

10.
The tegumental epithelium of the outer dorsolateral region in the proximal part of the coxae in the mid‐ and hindlegs of both workers and queens of the ants Odontomachus rixosus and O. simillimus is differentiated into a conspicuous and hitherto unknown exocrine gland. The glandular cells display a clear microvillar differentiation of their apical cell membrane, and are lined with the tegumental cuticle, which in this part contains crack‐like channels perpendicular to its surface, that carry the glandular secretions to the outside. Apical microvilli support the transport of substances, and contain an extension of tubular smooth endoplasmic reticulum in their centre. The function of the gland may be that of providing lubricant substances to the articulation region of the generally heavily sclerotized ponerine ant species. The gland is also found in several other ponerine and amblyoponine species, but not in the ectatommine species studied. The foreleg coxae lack a basicoxal gland in all species examined, which may be explained by the more limited articulation between the thorax and the coxae in the forelegs compared to the mid‐ and hindlegs.  相似文献   

11.
This paper provides the first comparative anatomical study of the explosive pygidial defensive system of bombardier beetles in species classified in three brachinine subtribes: Brachinus (Brachinina), Pheropsophus (Pheropsophina) and Aptinus (Aptinina). We investigated the morphology and ultrastructure of this system using optical, fluorescence, and focused ion beam (FIB/SEM) microscopy. In doing so, we characterized and comparatively discussed: (1) the ultrastructure of the gland tissues producing hydroquinones and hydrogen peroxide (secretory lobes), and those producing catalases and peroxidases (accessory glands); (2) the complex anatomy of the collecting duct; (3) the arrangement of the muscular bundles and the folding of the cuticle of the reservoir, suggesting a functional division of this chamber (dynamic part and storage part); (4) the great structural diversity of sculpticles inside the reaction chamber, where we could recognize six main types of microsculpture located in specific districts of the chamber. Additionally, using fluorescence microscopy, we highlighted the presence of resilin in two structures strongly subjected to mechanical stress during the discharge, the valve and the turrets of the reaction chamber. The results of this paper give a solid anatomic overview of the most popular beetle defensive system, contributing to the debate on its evolution within the Carabidae.  相似文献   

12.
刘超  任国栋 《昆虫学报》2012,55(10):1205-1220
基于16属65种琵甲(含新记述7属)的防御腺特征, 探讨了琵甲族(鞘翅目: 拟步甲科)的属级系统发育关系。通过对这些种的防御腺着生位置、 形状、 长度、 宽度、 囊体间距、 囊壁厚度、 囊壁花纹、 囊壁褶皱等特征进行解剖测量和分析, 归纳出族、 属级特征。利用SPSS19.0和Hennig86(1.5版)两个软件对选定特征进行聚类分析和系统进化分析, 得出琵甲族16属的进化关系为:Prosodes>Blaptogonia>Tagonoides>Thaumatoblaps>Caenoblaps>Agnaptoria>Asidoblaps>Coelocnemodes>Dila>Gnaptor>Blaps>Pseudognaptorina> Nalepa>Belousovia>Gnaptorina>Itagonia。基于防御腺形态学数据的琵甲族系统发育分析结果将琵甲族16个属清楚地分开, 表明其在分类上具有重要价值。  相似文献   

13.
The tracheal system of harvestmen consists of two stem tracheae, which give rise to higher order tracheae that supply the extremities and internal organs. In this study, we used stereological morphometric methods to investigate diffusing capacities of the walls ('lateral diffusing capacity') of the tracheae of adult males and females of Nemastoma lugubre. Diffusing barriers of the tracheal walls tend to be thinnest (0.17-0.19 microm) for the smallest tracheae (inner diameter 0.5-2 microm). In other tracheal classes the diffusing barriers increase with increasing diameters. Calculation of the mass-specific diffusing capacity for oxygen (D(O2)) of the walls of all higher order tracheae revealed 10.57 microl min(-1)g(-1)kPa(-1) for the females (mean body mass 3.8 mg) and 25.23 microl min(-1)g(-1)kPa(-1) for the males (mean body mass 1.4 mg). In both animal groups, the main D(O2) (58-67%) lies in the tracheae with an inner diameter of 0.5-2 microm, but also tracheae up to an inner diameter of 20 microm allow gas exchange via the tracheal walls. Stem tracheae are of no importance for lateral diffusion. Our results are consistent with the hypothesis that the functional morphology of the tracheal system of harvestmen represents an 'intermediate state' between the tracheal system of insects in which gas exchange is focused on the distal portions and that of spiders, in which the walls of all tracheae serve in gas exchange.  相似文献   

14.
In the female genital system of Zygaena moths, an additional pair of accessory glands is present besides the Y-shaped sebaceous gland. The term 'Petersen's glands' is proposed for these organs. Anatomy, histology, histochemistry and cytology of Petersen's glands of Zygaena trifolii are described. The sac-like glands, situated in the extreme dorsocaudal part of the abdomen, can be divided into a purely secretory part consisting of acini with large pear-shaped gland cells and a reservoir part with combined secretory and storage function. The secretory cells of the acini are penetrated by long curved ductules or secretory end apparatuses having feltwork consisting of very fine filaments. The cytoplasm is characterized by abundance of smooth tubular endoplasmic reticulum (ATER) and the presence of peroxisomes. This cytoplasmic organization is in accordance with the chemical composition of the sticky secretion, which evidently consists completely of lipids. The ultrastructure of the epithelium lining the reservoir of the glands has both traits of secretory and of transporting epithelia. Besides contributing to the secretion, it may be involved in absorption of residual aqueous phase from the contents of the reservoir.  相似文献   

15.
In the molluscan class Solenogastres, different types of foregut glands vary in number, structure, and location within the foregut. The present article describes their anatomy and cytology and intends to clarify their confused terminology. Pharyngeal glands, esophageal glands, and the more complex dorsal and ventrolateral foregut glands can be distinguished. The ventrolateral foregut glands (ventral foregut glandular organs, ventral salivary glands of auct.), in the literature subdivided previously into four types, are revisited here in the context of current vertebrate gland terminology. The results of recent investigations are added to earlier ones, and a classification system for these multicellular glands is proposed. This system is based on cytological characters of glandular cells (intra- or extraepithelial), characters of the associated musculature (inner or outer musculature), location of the gland relative to the pharynx epithelium (endoepithelial or exoepithelial), characters of the gland openings (paired or unpaired), morphology of the gland duct (simple or branched), and some additional features like the arrangement of glandular cells along the gland ducts. Gross morphology and anatomy of ventrolateral foregut glands constitute useful taxonomic characters in determining higher taxa (family level), and finer details of the anatomy and cytology are useful in determining lower levels (genus and species). Possible pathways for the evolution of the different gland types of Solenogastres in relation to foregut glands present in the other molluscan clades are presented. The importance of ventrolateral foregut gland characters for phylogenetic considerations within the Solenogastres is discussed.  相似文献   

16.
During the fifth (last) larval instar of Oncopeltus fasciatus, morphological changes in the molting glands associated with ecdysone secretion include an increase in cytoplasmic volume relative to that of the nucleus, increased amounts of rough endoplasmic reticulum and mitochondria, and the formation of deep infoldings of the plasma membrane. On the sixth day of the fifth instar large electron-lucent areas become apparent beneath the basement membrane; however, the glands remain intact until the seventh (last) day of the instar when a dramatic fragmentation of the cytoplasm, and condensation and fragmentation of the nucleus are observed. It is likely that such changes occur rapidly, just prior to the time of ecdysis to an adult. Cell death in the molting glands of Oncopeltus is markedly different from that described for the molting glands of other insect species in that autophagic vacuoles are not observed prior to a complete loss of cellular integrity.  相似文献   

17.
Sexually dimorphic glands often release sexual pheromones both in vertebrates and invertebrates. Species of Laniatores (Arachnida, Opiliones) seem to depend on chemical communication but few studies have addressed this topic. In this study, we review the literature for the Phalangida and present new data for 23 species of Laniatores. In 16 taxa, we found previously undescribed sexually dimorphic glandular openings on the femur, patella, metatarsus, and tarsus of legs I and metatarsus of legs III and IV. For the other species, we provide scanning electron micrographs of previously undescribed sexually dimorphic setae and pegs located on swollen regions of the legs. We also list additional species in which males have swollen regions on the legs, including the tibia, metatarsus, and tarsus of legs I, trochanter and tibia of legs II, femur, metatarsus, and tarsus of legs III, and metatarsus and tarsus of legs IV. The function and biological role of the secretions released by these glands are discussed. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
In amphibians, secretions of toxins from specialized skin poison glands play a central role in defense against predators. The production of toxic secretions is often associated with conspicuous color patterns that warn potential predators, as it is the case of many dendrobatid frogs, including Ameerega picta. This species resembles the presumably nontoxic Leptodactylus lineatus. This study tests for mimicry by studying the morphology and distribution of skin glands, components of skin secretion, and defensive behavior. Dorsal skin was studied histologically and histochemically, and skin secretions were submitted to sodium dodecyl sulfate polyacrylamide gel electrophoresis, reversed phase high performance liquid chromatography and assays for proteolytic activity. We found that poison glands in A. picta are filled with nonprotein granules that are rich in carbohydrates, while L. lineatus glands present protein granules. Accordingly, great amounts of proteins, at least some of them enzymes, were found in the poison of L. lineatus but not in that of A. picta. Both species differ greatly on profiles of gland distribution: In L. lineatus, poison glands are organized in clusters whose position coincides with colored elements of the dorsum. These regions are evidenced through a set of displays, suggesting that poison location is announced to predators through skin colors. In contrast, A. picta presents lower densities of glands, distributed homogeneously. This simpler profile suggests a rather qualitative than quantitative investment in chemical defense, in agreement with the high toxicity attributed to dendrobatids in general. Our data suggest that both species are toxic or unpalatable and transmit common warning signals to predators, which represents a case of Müllerian mimicry. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
任国栋  刘春林 《昆虫学报》2009,52(10):1146-1155
基于18个代表种的防御腺特征, 探讨了中国刺甲族(Platyscelidini)4个属的分类地位和系统发育关系。通过对防御腺的着生位置、形状及其长度和宽度、腺体间距及其表面花纹和皱褶等重要特征的分析, 归纳出属级和族级的防御腺特征。利用SPSS 13.0和Hennig 86(1.5)2个软件对所选定的防御腺特征分别进行聚类分析和进化分析, 两者结果均支持刺甲族现有分类体系的稳定性, 且后者提出刺甲族4属的系统发育关系为: (Myatis +Bioramix)+(Oodescelis + Platyscelis)  相似文献   

20.
Scanning electron microscopy (SEM) is a useful tool for identifying interspecific variation in often overlooked structures that may represent useful sources for informative phylogenetic characters. In this study, we used SEM to compare the morphology of 12 cosmetid species from Central America, the Caribbean, and North America including multiple species for the genera Cynorta, Erginulus, and Paecilaema. To determine if microanatomical structures were unique to the cosmetid taxa under examination, we investigated the microanatomical structures of six additional species of gonyleptoidean harvestmen representing the families Agoristenidae, Cranaidae, Gonyleptidae, Manaosbiidae, and Stygnidae. Our results indicate that the shape of the ocularium (narrow, intermediate, or broad) did not vary within cosmetid genera, whereas the morphology of the rough pit glands on the eye mound varied considerably between species. Each cosmetid species had 10–20 rough pit glands on the ocularium whereas only the eye mounds of Avima intermedia (Agoristenidae) and Glysterus sp. (Gonyleptidae) had similar structures. With regards to the surface texture of the dorsal scutum, cosmetid harvestmen exhibited a rivulose‐microgranulate morphology (6 species), a microtuberculate‐rivulose‐microrgranulate morphology (4 species), or a microgranulate morphology (2 species). In contrast, each of the gonyleptoidean species exhibited a microgranulate pattern, with the exception of Stygnoplus clavotibialis, which had a rivulose‐microgranulate surface texture. For cosmetid harvestmen, we observed considerable interspecific variation in the shape and number of teeth on the fixed and moveable fingers of the male chelicerae. Similarly, we also observed interspecific variation in the distribution and shape of tubercles on the ventral and dorsal surfaces of the femur of the pedipalp. Overall, our results indicate that there are several microanatomical structures associated with the ocularium, dorsal scutum, male chelicera, and pedipalp that could represent informative phylogenetic characters in future taxonomic studies of cosmetid harvestmen. J. Morphol. 275:1386–1405, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号