首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Although previous studies including ours have demonstrated the functional expression of different glutamate (Glu) signaling machineries such as Glu receptors (GluRs) and transporters in osteoblasts and chondrocytes, little attention has been paid to the role of Glu in their ancestral mesenchymal stem cells to date. In the present study, we have evaluated the possible functionality of Glu in cultured mouse mesenchymal stem cell line C3H10T1/2 cells endowed to proliferate for the self-renewal and to differentiate toward osteoblast, chondrocyte, adipocyte, and myocyte lineages. Expression of mRNA was for the first time shown with the cystine/Glu antiporter composed of xCT and 4F2hc subunits, in addition to particular excitatory amino acid transporter (EAAT) isoforms and ionotropic GluRs, in undifferentiated C3H10T1/2 cells. Glu significantly suppressed the proliferation activity at a concentration over 500 microM without inducing cell death or differentiation, while the suppression occurred in a manner sensitive to the prevention by cystine and reduced glutathione (GSH), but not by EAAT inhibitors. A significant decrease was seen in intracellular GSH levels in C3H10T1/2 cells cultured with Glu, whereas the cellular proliferation activity was drastically decreased by the addition of the GSH depleter cyclohexene-1-one and the GSH biosynthesis inhibitor L-buthionine-[S,R]-sulfoximine, respectively. Transient overexpression of both xCT and 4F2hc subunits led to an increased basal proliferative activity in C3H10T1/2 cells. These results suggest that Glu could suppress the cellular proliferation toward self-renewal through a mechanism associated with the depletion of intracellular GSH after promoting the retrograde operation of the cystine/Glu antiporter in C3H10T1/2 cells.  相似文献   

4.
Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0mMSr(2+)) under osteogenic or adipogenic medium for 1 and 2weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPARγ2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPARγ in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.  相似文献   

5.
6.
Although we have previously demonstrated the functional significance of excitatory amino acid transporters as well as glutamate (Glu) receptors (GluRs) expressed by chondrocytes, little attention has been paid to the possible expression of the cystine/Glu antiporter responsible for the bi-directional transmembrane transport of Glu in chondrocytes to date. In organotypic cultured mouse embryonic metatarsals isolated before vascularization, the chondral mineralization was significantly decreased in the presence of Glu at a high concentration. Apoptotic cells were detected within the late proliferating and prehypertrophic chondrocytic layers in metatarsals cultured in the presence of Glu. A group III metabotropic GluR (mGluR) antagonist partially, but significantly, prevented the inhibition of mineralization by Glu in metatarsals without affecting the number of apoptotic cells. Both decreased mineralization and apoptosis by Glu were significantly prevented by the addition of the cystine/Glu antiporter inhibitor homocysteic acid, as well as reduced glutathione (GSH) and cystine. Expression of mRNA for xCT and 4F2hc subunits, which are components of the cystine/Glu antiporter, was seen in both cultured mouse metatarsals and rat costal chondrocytes. In chondrocytes cultured with Glu, a significant decrease was seen in intracellular GSH levels, together with increases in the number of apoptotic cells and the level of intracellular reactive oxygen species. These results suggest that Glu could regulate chondrogenic differentiation toward mineralization through a mechanism associated with apoptosis mediated by the depletion of intracellular GSH after the retrograde operation of the cystine/Glu antiporter, in addition to the activation of group III mGluR, in chondrocytes.  相似文献   

7.
Activation of particular glutamate (Glu) receptors is shown to promote cellular differentiation toward maturation during osteoblastogenesis. In the present study, we have evaluated the possible modulation by Glu of cellular proliferation in osteoblastic cells endowed to proliferate for self-renewal and to differentiate toward matured osteoblasts. Exposure to Glu significantly suppressed the proliferation activity at a concentration over 500 microM without inducing cell death in osteoblastic MC3T3-E1 cells before differentiation. The suppression by Glu occurred in a manner sensitive to the prevention by either cystine or reduced glutathione. Expression of mRNA was for the first time shown with the cystine/Glu antiporter composed of xCT and 4F2hc subunits in these undifferentiated osteoblastic cells. A significant decrease was seen in intracellular total glutathione levels in undifferentiated MC3T3-E1 cells cultured with Glu, indeed, whereas the cellular proliferation activity was drastically decreased by the addition of the glutathione depleter cyclohexene-1-one and the glutathione biosynthesis inhibitor L-buthionine-[S,R]-sulfoximine, respectively. Exposure to Glu led to a significant increase in mRNA expression of nuclear factor E2 p45-related factor 2 (Nrf2) together with the generation of reactive oxygen species, while a significant decrease was seen in the proliferation activity in MC3T3-E1 cells with stable overexpression of Nrf2. These results suggest that Glu could suppress the cellular proliferation toward self-renewal through a mechanism associated with the upregulation of Nrf2 expression in association with the depletion of intracellular glutathione after promoting the retrograde operation of the cystine/Glu antiporter in undifferentiated MC3T3-E1 cells.  相似文献   

8.
9.
10.
Objectives: Dental follicle cells (DFCs) provide the origin of periodontal tissues, and Runx2 is essential for bone formation and tooth development. In this study, pluripotency of DFCs was evaluated and effects of Runx2 on them were investigated. Materials and methods: The DFCs were induced to differentiate towards osteoblasts, adipocytes or chondrocytes, and alizarin red staining, oil red O staining or alcian blue staining was performed to reveal the differentiated states. Bone marrow stromal cells (BMSCs) and primary mouse fibroblasts served as controls. DFCs were also infected with recombinant retroviruses encoding either full‐length Runx2 or mutant Runx2 without the VWRPY motif. Western blot analysis, real‐time real time RT‐PCR and in vitro mineralization assay were performed to evaluate the effects of full‐length Runx2 or mutant Runx2 on osteogenic/cementogenic differentiation of the cells. Results: The above‐mentioned staining methods demonstrated that DFCs were successfully induced to differentiate towards osteoblasts, adipocytes or chondrocytes respectively, confirming the existence of pluripotent mesenchymal stem cells in dental follicle tissues. However, staining intensity in DFC cultures was weaker than in BMSC cultures. Real‐time PCR analysis indicated that mutant Runx2 induced a more pronounced increase in expression levels of OC, OPN, Col I and CP23 than full‐length Runx2. Mineralization assay also showed that mutant Runx2 increased mineralization nodule formation more prominently than full‐length Runx2. Conclusions: Multipotent DFCs can be induced to differentiate towards osteoblasts, adipocytes or chondrocytes in vitro. Runx2 over‐expression up‐regulated expression levels of osteoblast/cementoblast‐related genes and in vitro enhanced osteogenic differentiation of DFCs. In addition, mutant Runx2‐induced changes in DFCs were more prominent than those induced by full‐length Runx2.  相似文献   

11.
Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.  相似文献   

12.
13.
Presently, bone marrow is considered as a prime source of mesenchymal stem cells; however, there are some drawbacks and limitations. Compared with other mesenchymal stem cell (MSC) sources, gingiva‐derived mesenchymal stem cells (GMSCs) are abundant and easy to obtain through minimally invasive cell isolation techniques. In this study, MSCs derived from gingiva and bone marrow were isolated and cultured from mice. GMSCs were characterized by osteogenic, adipogenic and chondrogenic differentiation, and flow cytometry. Compared with bone marrow MSCs (BMSCs), the proliferation capacity was judged by CCK‐8 proliferation assay. Osteogenic differentiation was assessed by ALP staining, ALP assay and Alizarin red staining. RT‐qPCR was performed for ALP, OCN, OSX and Runx2. The results indicated that GMSCs showed higher proliferative capacity than BMSCs. GMSCs turned more positive for ALP and formed a more number of mineralized nodules than BMSCs after osteogenic induction. RT‐qPCR revealed that the expression of ALP, OCN, OSX and Runx2 was significantly increased in the GMSCs compared with that in BMSCs. Moreover, it was found that the number of CD90‐positive cells in GMSCs elevated more than that of BMSCs during osteogenic induction. Taking these results together, it was indicated that GMSCs might be a promising source in the future bone tissue engineering.  相似文献   

14.
Dexamethasone (Dex) regulates osteoblastic and adipocytic differentiation in mesenchymal progenitor cells through regulation of Wnt/β-catenin signaling. To elucidate the regulatory mechanisms underlying the effects of Dex, we examine the expression of Axin2, which is an intracellular inhibitor of Wnt/β-catenin signaling, in ROB-C26 clonal mesenchymal progenitor cells (C26). We observed the induction of Axin2 mRNA in C26 cells in response to Dex treatment. Treatment with a glucocorticoid receptor (GR) antagonist, mifepristone, showed that Dex-induced up-regulation of Axin2 is mediated by the GR. In the absence of Dex, gene silencing by using Axin2-targeted short hairpin RNA increased the number of alkaline phosphatase (ALP)-positive and nuclear β-catenin-positive cells and ALP activity. In the presence of Dex, Axin2 knockdown resulted in an increased number of ALP-positive and nuclear β-catenin-positive cells. Furthermore, Axin2 knockdown in Dex-treated cells suppressed adipocyte differentiation (as determined by reduced Oil Red O staining), reduced the number of PPARγ-positive and aP2-positive cells and decreased the mRNA expression of PPARγ2 and aP2. These results suggest that Axin2 plays a key role in adipocyte and osteoblastic differentiation by controlling β-catenin expression.  相似文献   

15.
The differentiation potential of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) into brown and white adipocytes in comparison to Adipose tissue derived MSCs (AD-MSCs) were investigated in order to characterize their potency for future cell therapies. MSCs were isolated from ten UCB samples and six liposuction materials. MSCs were differentiated into white and brown adipocytes after characterization by flow cytometry. Differentiated adipocytes were stained with Oil Red O and hematoxylin/eosin. The UCP1 protein levels in brown adipocytes were investigated by immunofluoresence and western blot analysis. Cells that expressed mesenchymal stem cells markers (CD34?, CD45?, CD90+ and CD105+) were successfully isolated from UCB and adipose tissue. Oil Red O staining demonstrated that white and brown adipocytes obtained from AD-MSCs showed 85 and 61% of red pixels, while it was 3 and 1.9%, respectively for white and brown adipocytes obtained from UCB-MSCs. Fluorescence microscopy analysis showed strong uncoupling protein 1 (UCP1) signaling in brown adipocytes, especially which were obtained from AD-MSCs. Quantification of UCP1 protein amount showed 4- and 10.64-fold increase in UCP1 contents of brown adipocytes derived from UCB-MSCs and AD-MSCs, respectively in comparison to undifferentiated MSCs (P?<?0.004). UCB-MSCs showed only a little differentiation tendency into adipocytes means it is not an appropriate stem cell type to be differentiated into these cell types. In contrast, high differentiation efficiency of AD-MSCs into brown and white adipocytes make it appropriate stem cell type to use in future regenerative medicine of soft tissue disorders or fighting with obesity and its related disorders.  相似文献   

16.
17.
We compared the osteoblastic differentiation abilities of dedifferentiated fat cells (DFATs) and human bone marrow mesenchymal stem cells (hMSCs) as a cell source for bone regeneration therapies. In addition, the utility of DFATs in bone tissue engineering in vitro was assessed by an alpha-tricalcium phosphate (α-TCP)/collagen sponge (CS). Human DFATs were isolated from the submandibular of a patient by ceiling culture. DFATs and hMSCs at passage 3 were cultured in control medium or osteogenic medium (OM) for 14 days. Runx2 gene expression, alkaline phosphatase (ALP) activity, as well as osteocalcin (OCN) and calcium contents were analyzed to evaluate the osteoblastic differentiation ability of both cell types. DFATs seeded in a α-TCP/CS and cultured in OM for 14 days were analyzed by scanning electron microscopy (SEM) and histologically. Compared with hMSCs, DFATs cultured in OM generally underwent superior osteoblastogenesis by higher Runx2 gene expression at all days tested, as well as higher ALP activity at day 3 and 7, OCN expression at day 14, and calcium content at day 7. In SEM analyses, DFATs seeded in a α-TCP/CS were well spread and covered the α-TCP/CS by day 7. In addition, numerous spherical deposits were found to almost completely cover the α-TCP/CS on day 14. Von Kossa staining showed that DFATs differentiated into osteoblasts in the α-TCP/CS and formed cultured bone by deposition of a mineralized extracellular matrix. The combined use of DFATs and an α-TCP/CS may be an attractive option for bone tissue engineering.  相似文献   

18.
Oxysterols form a large family of oxygenated derivatives of cholesterol that are present in circulation, and in human and animal tissues. The discovery of osteoinductive molecules that can induce the lineage-specific differentiation of cells into osteoblastic cells and therefore enhance bone formation is crucial for better management of bone fractures and osteoporosis. We previously reported that specific oxysterols have potent osteoinductive properties and induce the osteoblastic differentiation of pluripotent mesenchymal cells. In the present report we demonstrate that the induction of osteoblastic differentiation by oxysterols is mediated through a protein kinase C (PKC)- and protein kinase A (PKA)-dependent mechanism(s). Furthermore, oxysterol-induced-osteoblastic differentiation is marked by the prolonged DNA-binding activity of Runx2 in M2-10B4 bone marrow stromal cells (MSCs) and C3H10T1/2 embryonic fibroblastic cells. This increased activity of Runx2 is almost completely inhibited by PKC inhibitors Bisindolylmaleimide and Rottlerin, and only minimally inhibited by PKA inihibitor H-89. PKC- and PKA-dependent mechanisms appear to also regulate other markers of osteoblastic differentiation including alkaline phosphatase (ALP) activity and osteocalcin mRNA expression in response to oxysterols. Finally, osteogenic oxysterols induce osteoblastic differentiation with BMP7 and BMP14 in a synergistic manner as demonstrated by the enhanced Runx2 DNA-binding activity, ALP activity, and osteocalcin mRNA expression. Since Runx2 is an indispensable factor that regulates the differentiation of osteoblastic cells and bone formation in vitro and in vivo, its increased activity in oxysterol-treated cells further validates the potential role of oxysterols in lineage-specific differentiation of pluripotent mesenchymal cells and their potential therapeutic use as bone anabolic factors.  相似文献   

19.
目的:观察sonic hedgehog(Shh)信号通路在骨形态发生蛋白9(BMP9)诱导的小鼠间充质干细胞(MSCs)C3H10T1/2和C2C12成骨分化中的作用,并初步探讨其作用机制。方法:Shh信号通路抑制剂Cyclopamine和激活剂Purmorphamine以及过表达Shh腺病毒分别作用于BMP9处理的C3H10T1/2和C2C12细胞,碱性磷酸酶(ALP)检测早期成骨指标ALP,茜素红S染色检测晚期成骨指标钙盐沉积,RT-PCR检测Shh信号相关基因以及成骨关键转录因子的表达,Western blot检测Shh的表达,荧光素酶报告基因检测Smad1/5/8的转录调控活性。结果:BMP9促进Shh信号相关基因的表达,激活Shh信号可增强BMP9诱导的C3H10T1/2和C2C12细胞早晚期成骨分化并促进了BMP9诱导的Smad荧光素酶活性,抑制Shh信号后作用相反。结论:激活Shh信号通路可促进BMP9诱导的小鼠MSCs成骨分化,抑制其活性后作用相反。  相似文献   

20.
Osteoblasts and adipocytes originate from common mesenchymal progenitor cells and although a number of compounds can induce osteoblastic and adipogenic differentiation from progenitor cells, the underlying mechanisms have not been elucidated. The present study examined the synergistic effects of dexamethasone (Dex) and bone morphogenetic protein (BMP)‐2 on the differentiation of clonal mesenchymal progenitor cells isolated from rat calvaria into osteoblasts and adipocytes, as well as the effects of the timing of treatment. Cells were cultured for various periods of time in the presence of Dex and/or BMP‐2. When cells were treated with Dex + BMP‐2 during the early phase of differentiation, they differentiated into adipocytes. However, when cells were treated with Dex + BMP‐2 during the late phase of differentiation, a synergistic effect on in vitro matrix mineralization was observed. To examine differences between the early and late phases of differentiation, ALP activity was measured in the presence of BMP‐2. ALP activity increased markedly on Day 9, corresponding to the onset of the synergistic effect of Dex. Dex treatment inhibited osterix (OSX) expression in cells committed to adipogenic differentiation, but not in cells committed to osteogenic differentiation following BMP‐2 treatment. The isoform2 OSX promoter region was found to be involved in the effects of Dex on cells during the early phase of differentiation. Furthermore, cells stably expressing OSX (isoform2) formed mineralized nodules even though they had been treated with Dex + BMP‐2 during the early phase of differentiation. It appears that Dex modulates osteogenesis and adipogenesis in mesenchymal stem cells by regulating OSX expression. J. Cell. Physiol. 226: 739–748, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号