首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interferon (IFN)‐γ‐induced protein 10 (IP‐10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN‐γ depending on cell type, the mechanisms regulating CXCL10 production following treatment with combination of IFN‐γ and TNF‐α have not been adequately elucidated in human monocytes. In this study, we showed that TNF‐α had more potential than IFN‐γ to induce CXCL10 production in THP‐1 monocytes. Furthermore, IFN‐γ synergistically enhanced the production of CXCL10 in parallel with the activation of NF‐κB in TNF‐α‐stimulated THP‐1 cells. Blockage of STAT1 or NF‐κB suppressed CXCL10 production. JAKs inhibitors suppressed IFN‐γ plus TNF‐α‐induced production of CXCL10 in parallel with activation of STAT1 and NF‐κB, while ERK inhibitor suppressed production of CXCL10 as well as activation of NF‐κB, but not that of STAT1. IFN‐γ‐induced phosphorylation of JAK1 and JAK2, whereas TNF‐α induced phosphorylation of ERK1/2. Interestingly, IFN‐γ alone had no effect on phosphorylation and degradation of IκB‐α, whereas it significantly promoted TNF‐α‐induced phosphorylation and degradation of IκB‐α. These results suggest that TNF‐α induces CXCL10 production by activating NF‐κB through ERK and that IFN‐γ induces CXCL10 production by increasing the activation of STAT1 through JAKs pathways. Of note, TNF‐α‐induced NF‐κB may be the primary pathway contributing to CXCL10 production in THP‐1 cells. IFN‐γ potentiates TNF‐α‐induced CXCL10 production in THP‐1 cells by increasing the activation of STAT1 and NF‐κB through JAK1 and JAK2. J. Cell. Physiol. 220: 690–697, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
The increased generation of reactive oxygen species (ROS) induces inflammation in different cell types. However, it is unclear whether ROS play an essential role in the production of thymus and activation‐regulated chemokine (TARC/CCL17) and macrophage‐derived chemokine (MDC/CCL22) in keratinocytes. Here, we investigated the function of ROS in the production of these two Th2 chemokines in interferon‐gamma (IFN‐γ)‐treated HaCaT keratinocytes. We found that IFN‐γ‐induced production of both chemokines in parallel with the increased generation of intracellular ROS. A ROS scavenger, N‐acetyl cysteine (NAC), significantly inhibited the IFN‐γ‐induced production of chemokines as well as the activation of I kappa‐B (IκB)–nuclear factor‐kappa B (NF‐κB). Inhibitors of Janus family kinases (JAKs), p38 mitogen‐activated kinase (MAPK), and NF‐κB suppressed IFN‐γ‐induced production of TARC and MDC. NF‐κB activation was inhibited by both inhibitors of JAKs and p38 MAPK. Importantly, IFN‐γ‐stimulated phosphorylation of p38 MAPK was significantly suppressed by JAKs inhibitors, but not significantly affected by NAC or L ‐buthionine sulfoximine (L‐BSO). However, IFN‐γ‐stimulated activation of IκB and NF‐κB was suppressed by NAC but enhanced by BSO. Furthermore, inhibition of p38 MAPK and JAKs did not affect ROS generation in IFN‐γ‐stimulated HaCaT cells. These results indicate that intracellular ROS and JAKs/p38 MAPK both contribute independently to IFN‐γ‐stimulated production of TARC and MDC in HaCaT keratinocytes, by increasing NF‐κB activation. J. Cell. Physiol. 226: 58–65, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
The gene encoding leucine‐rich repeat kinase 2 (LRRK2) comprises a major risk factor for Parkinson's disease. Recently, it has emerged that LRRK2 plays important roles in the immune system. LRRK2 is induced by interferon‐γ (IFN‐γ) in monocytes, but the signaling pathway is not known. Here, we show that IFN‐γ‐mediated induction of LRRK2 was suppressed by pharmacological inhibition and RNA interference of the extracellular signal‐regulated kinase 5 (ERK5). This was confirmed by LRRK2 immunostaining, which also revealed that the morphological responses to IFN‐γ were suppressed by ERK5 inhibitor treatment. Both human acute monocytic leukemia THP‐1 cells and human peripheral blood monocytes stimulated the ERK5‐LRRK2 pathway after differentiation into macrophages. Thus, LRRK2 is induced via a novel, ERK5‐dependent IFN‐γ signal transduction pathway, pointing to new functions of ERK5 and LRRK2 in human macrophages.

  相似文献   


5.
Systemic sclerosis (SSc) is a complex disease characterized by vascular alterations, activation of the immune system and tissue fibrosis. Previous studies have implicated activation of the interferon pathways in the pathogenesis of SSc. The goal of this study was to determine whether interferon type I and/or type II could play a pathogenic role in SSc vasculopathy. Human dermal microvascular endothelial cells (HDMVECs) and fibroblasts were obtained from foreskins of healthy newborns. The RT Profiler PCR Array System was utilized to screen for EndoMT genes. Treatment with IFN‐α or IFN‐γ downregulated Fli1 and VE‐cadherin. In contrast, IFN‐α and IFN‐γ exerted opposite effects on the expression of α‐SMA, CTGF, ET‐1, and TGFβ2, with IFN‐α downregulating and IFN‐γ upregulating this set of genes. Blockade of TGFβ signaling normalized IFN‐γ‐mediated changes in Fli1, VE‐cadherin, CTGF, and ET‐1 levels, whereas upregulation of α‐SMA and TGFβ2 was not affected. Bosentan treatment was more effective than TGFβ blockade in reversing the actions of IFN‐γ, including downregulation of α‐SMA and TGFβ2, suggesting that activation of the ET‐1 pathway plays a main role in the IFN‐γ responses in HDMECs. IFN‐γ induced expression of selected genes related to endothelial‐to‐mesenchymal transition (EndoMT), including Snail1, FN1, PAI1, TWIST1, STAT3, RGS2, and components of the WNT pathway. The effect of IFN‐γ on EndoMT was mediated via TGFβ2 and ET‐1 signaling pathways. This study demonstrates distinct effects of IFN‐α and IFN‐γ on the biology of vascular endothelial cells. IFN‐γ may contribute to abnormal vascular remodeling and fibrogenesis in SSc, partially via induction of EndoMT. J. Cell. Physiol. 228: 1774–1783, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
LIGHT recruits and activates naive T cells in the islets at the onset of diabetes. IFN‐γ secreted by activated T lymphocytes is involved in beta cell apoptosis. However, whether LIGHT sensitizes IFNγ‐induced beta cells destruction remains unclear. In this study, we used the murine beta cell line MIN6 and primary islet cells as models for investigating the underlying cellular mechanisms involved in LIGHT/IFNγ – induced pancreatic beta cell destruction. LIGHT and IFN‐γ synergistically reduced MIN6 and primary islet cells viability; decreased cell viability was due to apoptosis, as demonstrated by a significant increase in Annexin V+ cell percentage, detected by flow cytometry. In addition to marked increases in cytochrome c release and NF‐κB activation, the combination of LIGHT and IFN‐γ caused an obvious decrease in expression of the anti‐apoptotic proteins Bcl‐2 and Bcl‐xL, but an increase in expression of the pro‐apoptotic proteins Bak and Bax in MIN6 cells. Accordingly, LIGHT deficiency led to a decrease in NF‐κB activation and Bak expression, and peri‐insulitis in non‐obese diabetes mice. Inhibition of NF‐κB activation with the specific NF‐κB inhibitor, PDTC (pyrrolidine dithiocarbamate), reversed Bcl‐xL down‐regulation and Bax up‐regulation, and led to a significant increase in LIGHT‐ and IFN‐γ‐treated cell viability. Moreover, cleaved caspase‐9, ‐3, and PARP (poly (ADP‐ribose) polymerase) were observed after LIGHT and IFN‐γ treatment. Pretreatment with caspase inhibitors remarkably attenuated LIGHT‐ and IFNγ‐induced cell apoptosis. Taken together, our results indicate that LIGHT signalling pathway combined with IFN‐γ induces beta cells apoptosis via an NF‐κB/Bcl2‐dependent mitochondrial pathway.  相似文献   

7.
The hydrophilic α‐tocopherol derivative, 2,2,5,7,8‐pentamethyl‐6‐hydroxychromane (PMC), is a promising alternative to vitamin E in clinical applications. Critical vascular inflammation leads to vascular dysfunction and vascular diseases, including atherosclerosis, hypertension and abdominal aortic aneurysms. In this study, we investigated the mechanisms of the inhibitory effects of PMC in vascular smooth muscle cells (VSMCs) exposed to pro‐inflammatory stimuli, lipopolysaccharide (LPS) combined with interferon (IFN)‐γ. Treatment of LPS/IFN‐γ‐stimulated VSMCs with PMC suppressed the expression of inducible nitric oxide synthase (iNOS) and matrix metalloproteinase‐9 in a concentration‐dependent manner. A reduction in LPS/IFN‐γ‐induced nuclear factor (NF)‐κB activation was also observed in PMC‐treated VSMCs. The translocation and phosphorylation of p65, protein phosphatase 2A (PP2A) inactivation and the formation of reactive oxygen species (ROS) were significantly inhibited by PMC in LPS/IFN‐γ‐activated VSMCs. However, neither IκBα degradation nor IκB kinase (IKK) or ribosomal s6 kinase‐1 phosphorylation was affected by PMC under these conditions. Both treatments with okadaic acid, a PP2A‐selective inhibitor, and transfection with PP2A siRNA markedly reversed the PMC‐mediated inhibition of iNOS expression, NF‐κB‐promoter activity and p65 phosphorylation. Immunoprecipitation analysis of the cellular extracts of LPS/IFN‐γ‐stimulated VSMCs revealed that p65 colocalizes with PP2A. In addition, p65 phosphorylation and PP2A inactivation were induced in VSMCs by treatment with H2O2, but neither IκBα degradation nor IKK phosphorylation was observed. These results collectively indicate that the PMC‐mediated inhibition of NF‐κB activity in LPS/IFN‐γ‐stimulated VSMCs occurs through the ROS‐PP2A‐p65 signalling cascade, an IKK‐IκBα‐independent mechanism. Therapeutic interventions using PMC may therefore be beneficial for the treatment of vascular inflammatory diseases.  相似文献   

8.
The purpose of the present study was to examine the potential effect of IFN‐γ (interferon‐γ) on the cellular content and phosphorylation of PKB (protein kinase B), p70S6k (p70 S6 kinase) and MAPK (mitogen‐activated protein kinase), and on the ability of insulin to stimulate the glucose uptake and protein synthesis in mouse C2C12 myotubes. Insulin (100 nmol/l) stimulated glucose uptake in C2C12 myotubes by 203.4%. Glucose uptake in cells differentiated in the presence of IFN‐γ (10 ng/ml) was increased by 165.8% and was not further significantly modified by the addition of insulin (183.4% of control value). Insulin increased the rate of protein synthesis by 198.8%. The basal rate of protein synthesis was not affected by IFN‐γ; however, this cytokine abolished the insulin effect. Cellular levels of PKB, p70S6k, p42MAPK and p44MAPK were not modified by IFN‐γ. Insulin caused the phosphorylation of PKB and the activation of p70S6k, but not p42MAPK and p44MAPK. In cells differentiated in the presence of IFN‐γ, the insulin‐mediated PKB phosphorylation was significantly diminished, whereas the phosphorylation of p70S6k was completely prevented. Pretreatment of C2C12 myogenic cells with IFN‐γ led to the marked increase in p42MAPK phosphorylation. Exposure of C2C12 myoblasts to IFN‐γ impaired MyoD and myogenin expression and decreased the fusion index on the fifth day of differentiation. In conclusion, (i) IFN‐γ present in the extracellular environment during C2C12 myoblast differentiation prevents the stimulatory action of insulin on protein synthesis; (ii) IFN‐γ‐induced insulin resistance of protein synthesis in myogenic cells can be associated with the decreased phosphorylation of PKB and p70S6k, as well as with the augmented basal phosphorylation of p42MAPK; (iii) this cytokine effect can be partly explained by alterations in the differentiation process.  相似文献   

9.
This study investigates the in vitro modulatory effects of interferon‐γ (IFN‐γ) and interleukin‐4 (IL‐4) on both proliferative bovine T cell responses and IL‐10 production induced by different antigens [crude larval extract and the purified fractions hypodermin A, B and C (HyA, HyB, HyC)] obtained from first instars of Hypoderma lineatum (Diptera: Oestridae), alone or in the presence of the mitogen concanavalin A. Incubation with the different parasitic antigens resulted in significant inhibition of T cell proliferation and IL‐10 production, which, in general, did not revert after the addition of IFN‐γ and IL‐4. In the absence of antigens, IL‐4 induced significant inhibition of mitogen‐induced T cell responses. Exogenous IFN‐γ exhibited an inhibitory effect on cell proliferation in the presence of the purified fractions HyB and HyC. These in vitro data suggest that far from neutralizing the effects of larval antigens, the addition of IFN‐γ potentiates their anti‐proliferative activity; by contrast, IL‐4 had no consistent effects on proliferative responses to Hypoderma. IL‐4 provoked an increment of IL‐10 levels in supernatants of HyB‐stimulated cells. In conclusion, exogenous IFN‐γ and IL‐4 were unable to counteract the suppressor effects of H. lineatum antigens.  相似文献   

10.
Fucoidan has shown numerous biological actions; however, the molecular bases of these actions have being issued. We examined the effect of fucoidan on NO production induced by IFN‐γ and the molecular mechanisms underlying these effects in two types of cells including glia (C6, BV‐2) and macrophages (RAW264.7, peritoneal primary cells). Fucoidan affected IFN‐γ‐induced NO and/or iNOS expression both in macrophages and glial cells but in a contrast way. Our data showed that in C6 glioma cells both JAK/STAT and p38 signaling positively regulated IFN‐γ‐induced iNOS, which were inhibited by fucoidan. In contrast, in RAW264.7 cells JAK/STAT is a positive regulator whereas p38 is a negative regulator of NO/iNOS production. In RAW264.7 cells, fucoidan enhanced p38 activation and induced TNF‐α production. We also confirmed the dual regulation of p38 in BV‐2 microglia and primary peritoneal macrophages. From these results, we suggest that fucoidan affects not only IFN‐γ‐induced NO/iNOS production differently in brain and peritoneal macrophages due to the different roles of p38 but the effects on TNF‐α production in the two cell types. These novel observations including selective and cell‐type specific effects of fucoidan on IFN‐γ‐mediated signaling and iNOS expression raise the possibility that it alters the sensitivity of cells to the p38 activation. J. Cell. Biochem. 111: 1337–1345, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
We aimed to assess the immunoregulatory effects of IFN‐β in patients with tuberculous pleurisy. IFN‐β, IFN‐γ and IL‐17 expression levels were detected, and correlations among these factors in different culture groups were analyzed. Pleural fluid mononuclear cells (PFMC) from tuberculous pleural effusions, but not peripheral blood mononuclear cells (PBMC) from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ. Moreover, exogenous IFN‐β significantly inhibited the expression of IL‐17 in PFMC. By contrast, IFN‐β simultaneously enhanced the levels of IFN‐γ. To further investigate the regulation of IL‐17 and IFN‐γ by endogenous IFN‐β, an IFN‐β neutralizing antibody was simultaneously added to bacillus Calmette‐Guérin (BCG)‐stimulated PFMC. IL‐17 expression was significantly increased, but IFN‐γ production was markedly decreased in the experimental group supplemented with the IFN‐β neutralizing antibody. Simultaneously, IL‐17 production was remarkably increased in the experimental group supplemented with the IFN‐γ neutralizing antibody. Taken together, in our study, we first found that freshly isolated PFMC, but not PBMC from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ in vivo. Moreover, IFN‐β suppressed IL‐17 expression and increased IFN‐γ production. Furthermore, both IFN‐β and IFN‐γ down‐regulated IL‐17 expression. These observations suggest that caution is required when basing anti‐tuberculosis treatment on the inhibition of IFN‐β signaling.  相似文献   

12.
The epithelial‐mesenchymal transition (EMT) is involved in many different types of cellular behavior, including liver fibrosis. In this report, we studied a novel function of RAR‐related orphan receptor gamma (ROR‐γ) in hepatocyte EMT during liver fibrosis. To induce EMT in vitro, primary hepatocytes and FL83B cells were treated with TGF‐β1. Expression of ROR‐γ was analyzed by Western blot in the fibrotic mouse livers and human livers with cirrhosis. To verify the role of ROR‐γ in hepatocyte EMT, we silenced ROR‐γ in FL83B cells using a lentiviral short hairpin RNA (shRNA) vector. The therapeutic effect of ROR‐γ silencing was investigated in a mouse model of TAA‐induced fibrosis by hydrodynamic injection of plasmids. ROR‐γ expression was elevated in hepatocyte cells treated with TGF‐β1, and ROR‐γ protein levels were elevated in the fibrotic mouse livers and human livers with cirrhosis. Knockdown of ROR‐γ resulted in the attenuation of TGF‐β1‐induced EMT in hepatocytes. Strikingly, ROR‐γ bound to ROR‐specific DNA response elements (ROREs) in the promoter region of TGF‐β type I receptor (Tgfbr1) and Smad2, resulting in the downregulation of Tgfbr1 and Smad2 after silencing of ROR‐γ. Therapeutic delivery of shRNA against ROR‐γ attenuated hepatocyte EMT and ameliorated liver fibrosis in a mouse model of TAA‐induced liver fibrosis. Overall, our results suggest that ROR‐γ regulates TGF‐β‐induced EMT in hepatocytes during liver fibrosis. We suggest that ROR‐γ may become a potential therapeutic target in treating liver fibrosis. J. Cell. Biochem. 118: 2026–2036, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

13.
14.
Adequate regulation of endolymphatic pH is essential for maintaining inner ear function. The Na+–H+ exchanger (NHE) is a major determinant of intracellular pH (pHi), and facilitates Na+ and fluid absorption in various epithelia. We determined the functional and molecular expression of NHEs in cultured human endolymphatic sac (ES) epithelial cells and examined the effect of IFN‐γ on NHE function. Serial cultures of human ES epithelial cells were generated from tissue samples. The molecular expression of NHE1, ‐2, and ‐3 isoforms was determined by real‐time RT‐PCR. The functional activity of NHE isoforms was measured microfluorometrically using a pH‐sensitive fluorescent dye, 2′,7′‐bis(carbonylethyl)‐5(6)‐carboxyfluorescein (BCECF), and a NHE‐inhibitor, 3‐methylsulfonyl‐4‐piperidinobenzoyl guanidine methanesulfonate (HOE694). NHE1, ‐2, and ‐3 mRNAs were expressed in human ES epithelial cells. Functional activity of NHE1 and ‐2 was confirmed in the luminal membrane of ES epithelial cells by sequentially suppressing Na+‐dependent pHi recovery from intracellular acidification using different concentrations of HOE694. Treatment with IFN‐γ (50 nM for 24 h) suppressed mRNA expression of NHE1 and ‐2. IFN‐γ also suppressed functional activity of both NHE1 and ‐2 in the luminal membrane of ES epithelial cells. This study shows that NHEs are expressed in cultured human ES epithelial cells and that treatment with IFN‐γ suppresses the expression and functional activity of NHE1 and ‐2. J. Cell. Biochem. 107: 965–972, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Src homology phosphotyrosyl phosphatase 2 (Shp‐2) is a ubiquitously expressed protein that is involved in a variety of cellular processes, including antiviral interferon signalling pathways. In this study, we investigated the role of Shp‐2 in the host cell interactions of human respiratory syncytial virus (RSV). We report significant changes in the expression of Shp‐2 in human pulmonary alveolar epithelial cells (A549) upon RSV infection. We also report that blocking Shp‐2 does not affect viral replication or virus‐induced interferon‐alpha (IFN‐α) production. Interestingly, whereas A549 cells were activated by IFN‐α, the blocking of Shp‐2 resulted in increased viral replication that was associated with the reduced expression of the IFN‐stimulated genes of 2′,5′‐oligoadenylate synthetases and Mx1, and the concomitant inhibition of Stat1 tyrosine phosphorylation. Our findings suggest that Shp‐2 contributes to the control of RSV replication and progeny production in pulmonary alveolar epithelial cells by interfering with IFN‐α‐induced Jak/Stat1 pathway activation rather than by affecting the production of IFN‐α itself.  相似文献   

16.
Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in interferon gamma (IFN‐γ) induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly contacted with productive and IFN‐γ‐induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN‐γ‐induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN‐γ‐induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor‐2α (eIF2α) and down‐regulation of the vesicle‐associated membrane protein‐associated protein B. Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN‐γ‐induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER‐related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN‐γ‐induced persistent infection.  相似文献   

17.
Background. Helicobacter pylori (H. pylori) infection is associated with chronic infiltration into the stomach by T cells and plasma cells producing IFN‐γ and antibodies of various specificities, respectively. It is unknown whether these lymphocyte‐products may play coordinated roles in the gastric pathology of this infection. Aims. To know how IFN‐γ may relate to anti‐H. pylori antibodies in their roles in pathogenesis, we determined the isotype subclass of those antibodies as well as their cross‐reactivity and cytotoxicity to gastric epithelium. Methods and Results. We infected BALB/c mice with H. pylori (SS1, Sydney Strain 1) and generated monoclonal antibodies, which were comprised of 240 independent clones secreting immunoglobulin and included 80 clones reactive to SS1. Ninety percent of the SS1‐reactive clones had IgG2a isotype. Two clones, 2B10 and 1A9, were cross reactive to cell surface antigens in H. pylori and to antigens of 28 KDa and 42 KDa, respectively, which were present on the cell surface of and shared by both mouse and human gastric epithelial cells. The antigens recognized by these monoclonal antibodies localized a distinctive area in the gastric glands. In the presence of complement, 2B10 showed cytotoxicity to gastric epithelial cells. The effect was dose dependant and augmented by IFN‐γ. Finally, administration of 2B10 to mice with SS1 infection aggravated gastritis by increasing cellular infiltration. Conclusion. IFN‐γ by gastric T cells may participate in pathogenesis of the H. pylori infected stomach by directing an isotype‐switch of anti‐H. pylori antibodies to complement‐binding subclass and by augmenting cytotoxic activity of a certain autoantibody. This may explain a host‐dependent diversity in gastric pathology of the patients with H. pylori infection.  相似文献   

18.
19.
Proliferative vitreoretinopathy (PVR) is a blinding eye disease. Epithelial‐mesenchymal transition (EMT) of RPE cells plays an important role in the pathogenesis of PVR. In the current study, we sought to investigate the role of the methyl‐CpG‐binding protein 2 (MeCP2), especially P‐MeCP2‐421 in the pathogenesis of PVR. The expressions of P‐MeCP2‐421, P‐MeCP2‐80, PPAR‐γ and the double labelling of P‐MeCP2‐421 with α‐SMA, cytokeratin, TGF‐β and PPAR‐γ in human PVR membranes were analysed by immunohistochemistry. The effect of knocking down MeCP2 using siRNA on the expressions of α‐SMA, phospho‐Smad2/3, collagen I, fibronectin and PPAR‐γ; the expression of α‐SMA stimulated by recombinant MeCP2 in ARPE‐19; and the effect of TGF‐β and 5‐AZA treatment on PPAR‐γ expression were analysed by Western blot. Chromatin immunoprecipitation was used to determine the binding of MeCP2 to TGF‐β. Our results showed that P‐MeCP2‐421 was highly expressed in PVR membranes and was double labelled with α‐SMA, cytokeratin and TGF‐β, knocking down MeCP2 inhibited the activation of Smad2/3 and the expression of collagen I and fibronectin induced by TGF‐β. TGF‐β inhibited the expression of PPAR‐γ, silence of MeCP2 by siRNA or using MeCP2 inhibitor (5‐AZA) increased the expression of PPAR‐γ. α‐SMA was up‐regulated by the treatment of recombinant MeCP2. Importantly, we found that MeCP2 bound to TGF‐β as demonstrated by Chip assay. The results suggest that MeCP2 especially P‐MeCP2‐421 may play a significant role in the pathogenesis of PVR and targeting MeCP2 may be a potential therapeutic approach for the treatment of PVR.  相似文献   

20.
The role of adaptive immunity in obesity‐associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T‐cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4–22 weeks of a high‐fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, interferon‐γ (IFN‐γ), or regulated upon activation, normal T‐cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFN‐γ and RANTES gene expression were detected by 20–22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD‐induced T‐cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin‐12 (IL‐12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN‐γ secretion from phorbol myristate acetate (PMA)/ionophore‐stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T‐cell enrichment and IFN‐γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN‐γ production suggests the contribution of CD4+ and/or CD8+ effectors to cell‐mediated immune responses promoting HFD‐induced AT inflammation and IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号