首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A preliminary clinical trial using state‐of‐the‐art multiphoton tomography (MPT) and optical coherence tomography (OCT) for three‐dimensional (3D) multimodal in vivo imaging of normal skin, nevi, scars and pathologic skin lesions has been conducted. MPT enabled visualization of sub‐cellular details with axial and transverse resolutions of <2 μm and <0.5 μm, respectively, from a volume of 0.35 × 0.35 × 0.2 mm3 at a frame rate of 0.14 Hz (512 × 512 pixels). State‐of‐the‐art OCT, operating at a center wavelength of 1300 nm, was capable of acquiring 3D images depicting the layered architecture of skin with axial and transverse resolutions ~8 μm and ~20 μm, respectively, from a volume of 7 × 3.5 × 1.5 mm3 at a frame rate of 46 Hz (1024 × 1024 pixels). This study demonstrates the clinical diagnostic potential of MPT/OCT for pre‐screening relatively large areas of skin using 3D OCT to identify suspicious regions at microscopic level and subsequently using high resolution MPT to obtain zoomed in, sub‐cellular level information of the respective regions (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Endoscopic optical coherence tomography (OCT) is a noninvasive technology allowing for imaging of tissue microanatomies of luminal organs in real time. Conventional endoscopic OCT operates at 1300 nm wavelength region with a suboptimal axial resolution limited to 8‐20 μm. In this paper, we present the first ultrahigh‐resolution tethered OCT capsule operating at 800 nm and offering about 3‐ to 4‐fold improvement of axial resolution (plus enhanced imaging contrast). The capsule uses diffractive optics to manage chromatic aberration over a full ~200 nm spectral bandwidth centering around 830 nm, enabling to achieve super‐achromaticity and an axial resolution of ~2.6 μm in air. The performance of the OCT capsule is demonstrated by volumetric imaging of swine esophagus ex vivo and sheep esophagus in vivo, where fine anatomic structures including the sub‐epithelial layers are clearly identified. The ultrahigh resolution and excellent imaging contrast at 800 nm of the tethered capsule suggest the potential of the technology as an enabling tool for surveillance of early esophageal diseases on awake patients without the need for sedation.   相似文献   

3.
Our ability to detect neoplastic changes in gastrointestinal (GI) tracts is limited by the lack of an endomicroscopic imaging tool that provides cellular‐level structural details of GI mucosa over a large tissue area. In this article, we report a fiber‐optic‐based micro‐optical coherence tomography (μOCT) system and demonstrate its capability to acquire cellular‐level details of GI tissue through circumferential scanning. The system achieves an axial resolution of 2.48 μm in air and a transverse resolution of 4.8 μm with a depth‐of‐focus (DOF) of ~150 μm. To mitigate the issue of limited DOF, we used a rigid sheath to maintain a circular lumen and center the distal‐end optics. The sensitivity is tested to be 98.8 dB with an illumination power of 15.6 mW on the sample. With fresh swine colon tissues imaged ex vivo, detailed structures such as crypt lumens and goblet cells can be clearly resolved, demonstrating that this fiber‐optic μOCT system is capable of visualizing cellular‐level morphological features. We also demonstrate that time‐lapsed frame averaging and imaging speckle reduction are essential for clearly visualizing cellular‐level details. Further development of a clinically viable μOCT endomicroscope is likely to improve the diagnostic outcome of GI cancers.   相似文献   

4.
Photoacoustic microscopy (PAM) can be classified as optical resolution (OR)‐PAM and acoustic resolution (AR)‐PAM depending on the type of resolution achieved. Using microelectromechanical systems (MEMS) scanner, high‐speed OR‐PAM system was developed earlier. Depth of imaging limits the use of OR‐PAM technology for many preclinical and clinical imaging applications. Here, we demonstrate the use of a high‐speed MEMS scanner for AR‐PAM imaging. Lateral resolution of 84 μm and an axial resolution of 27 μm with ~2.7 mm imaging depth was achieved using a 50 MHz transducer‐based AR‐PAM system. Use of a higher frequency transducer at 75 MHz has further improved the resolution characteristics of the system with a reduction in imaging depth and a lateral resolution of 53 μm and an axial resolution of 18 μm with ~1.8 mm imaging depth was achieved. Using the two‐axis MEMS scanner a 2 × 2 .5 mm2 area was imaged in 3 seconds. The capability of achieving acoustic resolution images using the MEMS scanner makes it beneficial for the development of high‐speed miniaturized systems for deeper tissue imaging.   相似文献   

5.
Halophilic (salt loving), hydrogenotrophic (H2 oxidizing) denitrifying bacteria were investigated for treatment of nitrate <$>({\rm NO}_3^ ‐ )<$> and perchlorate <$>({\rm ClO}_4^ ‐ )<$> contaminated groundwater and ion exchange (IX) brines. Hydrogenotrophic denitrifying bacteria were enriched from a denitrifying wastewater seed under both halophilc and non‐halophilc conditions. The cultures were inoculated into bench‐scale membrane biofilm reactors (MBfRs) with an “outside in” configuration, with contaminated water supplied to the lumen of the membranes and H2 supplied to the shell. Abiotic mass transfer tests showed that H2 mass transfer coefficients were lower in brines than in tap water at highest Reynolds number, possibly due to increased transport of salts and decreased H2 solubility at the membrane/liquid interface. An average <$>{\rm NO}_3^ ‐ <$> removal efficiency of 93% was observed for the MBfR operated in continuous flow mode with synthetic contaminated groundwater. Removal efficiencies of 30% for <$>{\rm NO}_3^ ‐ <$> and 42% for <$>{\rm ClO}_4^ ‐ <$> were observed for the MBfR operated with synthetic IX brine in batch operating mode with a reaction time of 53 h. Phylogenetic analysis focused on the active microbial community and revealed that halotolerant, <$>{\rm NO}_3^ ‐ <$> ‐reducing bacteria of the bacterial classes Gamma‐Proteobacteria and Sphingobacteria were the metabolically dominant members within the stabilized biofilm. This study shows that, despite decreased H2 transfer under high salt conditions, hydrogenotrophic biological reduction may be successfully used for the treatment of <$>{\rm NO}_3^ ‐ <$> and <$>{\rm ClO}_4^ ‐ <$> in a MBfR. Biotechnol. Bioeng. 2009; 104: 483–491 © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Optical coherence tomography (OCT), with a high‐spatial resolution (<10 microns), intermediate penetration depth (~1.5 mm) and volumetric imaging capability is a great candidate to be used as a diagnostic‐assistant modality in dermatology. At this time, the accuracy of OCT for melanoma detection is lower than anticipated. In this letter, we studied for the first time, the use of a novel contrast agent consist of ultra‐small nanoparticles conjugated to a melanoma biomarker to improve the accuracy of OCT for differentiation of melanoma cells from nonmelanoma cells, in vitro. We call this approach SMall nanoparticle Aggregation‐enhanced Radiomics of Tumor (SMART)‐OCT imaging. This initial proof of concept study is the first step toward the broad utilization of this method for high accuracy all types of tumor detection applications.  相似文献   

7.
This article introduces a new functional imaging paradigm that uses optical coherence tomography (OCT) to detect rehydrated, lyophilized platelets (RL platelets) that are in the preclinical trial stage and contain superparamagnetic iron oxides (SPIOs) approved by the U.S. Food and Drug Administration. Platelets are highly functional blood cells that detect and adhere to sites of vascular endothelial damage by forming primary hemostatic plugs. By applying magnetic gradient forces, induced nanoscale displacements (magnetomotion) of the SPIO-RL platelets are detected as optical phase shifts in OCT. In this article, we characterize the iron content and magnetic properties of SPIO-RL platelets, construct a model to predict their magnetomotion in a tissue medium, and demonstrate OCT imaging in tissue phantoms and ex vivo pig arteries. Tissue phantoms containing SPIO-RL platelets exhibited >3 dB contrast/noise ratio at ≥1.5 × 109 platelets/cm3. OCT imaging was performed on ex vivo porcine arteries after infusion of SPIO-RL platelets, and specific contrast was obtained on an artery that was surface-damaged (P < 10−6). This may enable new technologies for in vivo monitoring of the adherence of SPIO-RL platelets to sites of bleeding and vascular damage, which is broadly applicable for assessing trauma and cardiovascular diseases.  相似文献   

8.
High frequency ultrasound (HFUS) and optical coherence tomography (OCT) are techniques for high resolution imaging of tissues. The penetration depth of these modalities is limited, but it is sufficiently large enough for non invasive skin imaging. HFUS and OCT are based on the same concept. Waves (ultrasonic waves, respectively light waves) propagate along a narrow beam, are backscattered at tissue inhomogeneities and analyzed over time of flight to obtain spatially resolved morphological information. The objective of this paper is to compare HFUS and OCT in terms of resolution, dynamic range and contrast and to assess their value as tools for high resolution skin imaging. Measurements on phantoms and in vivo have been performed with a 100 MHz ultrasound system and an OCT-scanner working in the near infrared spectrum at 1300 nm wave-length. From the measurements, it can be concluded that OCT delivers an almost isotropic resolution (axial resolution about 5.8 microns, lateral resolution about 4.1 microns), whereas the resolution of the investigated HFUS system is more anisotropic (axial resolution about 9.3 microns, lateral resolution about 60 microns). HFUS and OCT show different penetration depths and a different contrast. Both techniques can, therefore, be combined advantageously in a multimodality approach to account for their individual characteristics.  相似文献   

9.
As an important biomedical imaging method, endoscopic optical coherence tomography (OCT) is necessary to check its performance regularly. The ordinary plane phantoms are only able to evaluate part of image tangent to the probe. In this research, a spatial resolution estimate method of the endoscope OCT system is proposed. The annular phantom, made by uniformly distributing golden scattered microparticles in polydimethylsiloxane (PDMS), can provide dynamic scanning imaging evaluation of endoscopic OCT system, closer to its actual working status. The point spread function analysis method is used to analyze the imaging results of the annular phantom with the endoscopic OCT system. And many scattered particles are statistically analyzed to determine the spatial resolution of the endoscope OCT system. The method is low in cost, simple and convenient. It is valuable for the development of test standards for endoscope OCT systems.  相似文献   

10.
Thermodynamic, kinetic and equilibrium studies during the biosorption of Basic blue 41(BB 41) from aqueous solution using Bacillus macerans were carried out with a focus on pH, contact time, temperature, biomass dosage and initial dye concentration. The maximum adsorption capacity was found to be 89.2 mg/g under optimal conditions of pH (10.0) and temperature (25 °C). The biosorption rates obtained were consistent with the pseudo‐second order kinetic models. The equilibrium data were analyzed using linearized forms of Langmuir and Freundlich isotherms, and the Langmuir isotherm was found to provide the best correlation of the experimental data for the biosorption of BB 41. The equilibrium time for the removal of BB 41 by the biomass was attained within 90 min. Thermodynamic parameters such as free energy (<$>\Delta G<$>), enthalpy (<$>\Delta H<$>), and entropy (<$>\Delta S<$>) were also calculated. The results indicate that biosorption is spontaneous and exothermic in nature. The negative value of entropy confirms the decreased randomness at the solid‐liquid interface during the adsorption of BB 41 onto Bacillus macerans.  相似文献   

11.
Multiphoton microscopy has become popular in studying dermal nanoparticle penetration. This necessitates studying the imaging parameters of multiphoton microscopy in skin as an imaging medium, in terms of achievable detection depths and the resolution limit. This would simulate real‐case scenarios rather than depending on theoretical values determined under ideal conditions. This study has focused on depth profiling of sub‐resolution gold nanoparticles (AuNP) in reconstructed (fixed and unfixed) and human skin using multiphoton microscopy. Point spread functions (PSF) were determined for the used water‐immersion objective of 63×/NA = 1.2. Factors such as skin‐tissue compactness and the presence of wrinkles were found to deteriorate the accuracy of depth profiling. A broad range of AuNP detectable depths (20–100 μm) in reconstructed skin was observed. AuNP could only be detected up to ~14 μm depth in human skin. Lateral (0.5 ± 0.1 μm) and axial (1.0 ± 0.3 μm) PSF in reconstructed and human specimens were determined. Skin cells and intercellular components didn't degrade the PSF with depth. In summary, the imaging parameters of multiphoton microscopy in skin and practical limitations encountered in tracking nanoparticle penetration using this approach were investigated. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Photoacoustic imaging is a noninvasive imaging technique having the advantages of high‐optical contrast and good acoustic resolution at improved imaging depths. Light transport in biological tissues is mainly characterized by strong optical scattering and absorption. Photoacoustic microscopy is capable of achieving high‐resolution images at greater depth compared to conventional optical microscopy methods. In this work, we have developed a high‐resolution, acoustic resolution photoacoustic microscopy (AR‐PAM) system in the near infra‐red (NIR) window II (NIR‐II, eg, 1064 nm) for deep tissue imaging. Higher imaging depth is achieved as the tissue scattering at 1064 nm is lesser compared to visible or near infrared window‐I (NIR‐I). Our developed system can provide a lateral resolution of 130 μm, axial resolution of 57 μm, and image up to 11 mm deep in biological tissues. This 1064‐AR‐PAM system was used for imaging sentinel lymph node and the lymph vessel in rat. Urinary bladder of rat filled with black ink was also imaged to validate the feasibility of the developed system to study deeply seated organs.   相似文献   

13.
Two‐photon microscopy (2PM) is one of the most widely used tools for in vivo deep tissue imaging. However, the spatial resolution and penetration depth are still limited due to the strong scattering background. Here we demonstrate a two‐photon focal modulation microscopy. By utilizing the modulation and demodulation techniques, background rejection capability is enhanced, thus spatial resolution and imaging penetration depth are improved. Compared with 2PM, the transverse resolution is increased by 70%, while the axial resolution is increased to 2‐fold. Furthermore, when applied in conventional 2PM mode, it can achieve inertial‐free scanning in either transverse or axial direction with in principle unlimited scanning speed. Finally, we applied 2PFMM in thick scattering samples to further examine the imaging performance. The results show that the signal‐to‐background ratio of 2PFMM can be improved up to five times of 2PM at the depth of 500 μm. Fluorescent imaging in the mouse brain tissue. 3D Thy1‐GFP hippocampal neurons imaged by (A) 2PM compared with (B) 2PFMM; (C‐H) xy maximum‐intensity projection imaged by 2PM compared with 2PFMM. Scale bar 50 μm.   相似文献   

14.
Recent studies have demonstrated that extended imaging depth can be achieved using dual‐axis optical coherence tomography (DA‐OCT). By illuminating and collecting at an oblique angle, multiple forward scattered photons from large probing depths are preferentially detected. However, the mechanism behind the enhancement of imaging depth needs further illumination. Here, the signal of a DA‐OCT system is studied using a Monte Carlo simulation. We modeled light transport in tissue and recorded the spatial and angular distribution of photons exiting the tissue surface. Results indicate that the spatial separation and offset angle created by the non‐telecentric scanning configuration promote the collection of more deeply propagating photons than conventional on‐axis OCT.   相似文献   

15.
Optical coherence tomography (OCT) is an established imaging technology for in vivo skin investigation. Topical application of gold nanoshells (GNS) provides contrast enhancement in OCT by generating a strong hyperreflective signal from hair follicles and sweat glands, which are the natural skin openings. This study explores the utility of 150 nm diameter GNS as contrast agent for OCT imaging. GNS was massaged into skin and examined in four skin areas of 11 healthy volunteers. A commercial OCT system and a prototype with 3 μm resolution (UHR‐OCT) were employed to detect potential benefits of increased resolution and variability in intensity generated by the GNS. In both OCT‐systems GNS enhanced contrast from hair follicles and sweat ducts. Highest average penetration depth of GNS was in armpit 0.64 mm ± SD 0.17, maximum penetration depth was 1.20 mm in hair follicles and 15 to 40 μm in sweat ducts. Pixel intensity generated from GNS in hair follicles was significantly higher in UHR‐OCT images (P = .002) and epidermal thickness significantly lower 0.14 vs 0.16 mm (P = .027). This study suggests that GNSs are interesting candidates for increasing sensitivity in OCT diagnosis of hair and sweat gland disorders and demonstrates that choice of OCT systems influences results.   相似文献   

16.
Visualizing fine neuronal structures deep inside strongly light‐scattering brain tissue remains a challenge in neuroscience. Recent nanoscopy techniques have reached the necessary resolution but often suffer from limited imaging depth, long imaging time or high light fluence requirements. Here, we present two‐photon super‐resolution patterned excitation reconstruction (2P‐SuPER) microscopy for 3‐dimensional imaging of dendritic spine dynamics at a maximum demonstrated imaging depth of 130 μm in living brain tissue with approximately 100 nm spatial resolution. We confirmed 2P‐SuPER resolution using fluorescence nanoparticle and quantum dot phantoms and imaged spiny neurons in acute brain slices. We induced hippocampal plasticity and showed that 2P‐SuPER can resolve increases in dendritic spine head sizes on CA1 pyramidal neurons following theta‐burst stimulation of Schaffer collateral axons. 2P‐SuPER further revealed nanoscopic increases in dendritic spine neck widths, a feature of synaptic plasticity that has not been thoroughly investigated due to the combined limit of resolution and penetration depth in existing imaging technologies.   相似文献   

17.
The side lobes of Bessel beam will create significant out‐of‐focus background when scanned in light‐sheet fluorescence microscopy (LSFM), limiting the axial resolution of the imaging system. Here, we propose to overcome this issue by scanning the sample twice with zeroth‐order Bessel beam and another type of propagation‐invariant beam, complementary to the zeroth‐order Bessel beam, which greatly reduces the out‐of‐focus background created in the first scan. The axial resolution can be improved from 1.68 μm of the Bessel light‐sheet to 1.07 μm by subtraction of the two scanned images across a whole field‐of‐view of up to 300 μm × 200 μm × 200 μm. The optimization procedure to create the complementary beam is described in detail and it is experimentally generated with a spatial light modulator. The imaging performance is validated experimentally with fluorescent beads as well as eGFP‐labeled mouse brain neurons.   相似文献   

18.
Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 μm×50 μm×2.5 μm. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy.  相似文献   

19.
Imaging of alveoli in situ has for the most part been infeasible due to the high resolution required to discern individual alveoli and limited access to alveoli beneath the lung surface. In this study, we present a novel technique to image alveoli using optical coherence tomography (OCT). We propose the use of OCT needle probes, where the distal imaging probe has been miniaturized and encased within a hypodermic needle (as small as 30-gauge, outer diameter 310 μm), allowing insertion deep within the lung tissue with minimal tissue distortion. Such probes enable imaging at a resolution of ~12 μm within a three-dimensional cylindrical field of view with diameter ~1.5 mm centered on the needle tip. The imaging technique is demonstrated on excised lungs from three different species: adult rats, fetal sheep, and adult pigs. OCT needle probes were used to image alveoli, small bronchioles, and blood vessels, and results were matched to histological sections. We also present the first dynamic OCT images acquired with an OCT needle probe, allowing tracking of individual alveoli during simulated cyclical lung inflation and deflation.  相似文献   

20.
We demonstrate the first, to our knowledge, integration of stimulated emission depletion (STED) with selective plane illumination microscopy (SPIM). Using this method, we were able to obtain up to 60% improvements in axial resolution with lateral resolution enhancements in control samples and zebrafish embryos. The integrated STED-SPIM method combines the advantages of SPIM with the resolution enhancement of STED, and thus provides a method for fast, high-resolution imaging with >100 μm deep penetration into biological tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号