首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cranial musculature, dental function and mandibular movement patterns in Eremotherium laurillardi were reconstructed from the examination of crania and dentitions. Size, shape and pattern of muscle divisions were reconstructed from the examination of bony rugosities indicating muscle attachments. Details of masticatory muscle structure and function were based on dissections of the tree sloths Bradypus and Choloepus. Among sloths, masticatory muscles in E. laurillardi demonstrate a different synergist–antagonist pattern, reflecting greater emphasis on mediolateral mandibular movements. Eight cranial character complexes (anterior facial, zygomatic arch, superficial masseter, deep masseter–zygomaticomandibularis, pterygoid, temporal, occipital and occlusal) determined by interrelated contributions of each component made to group functions were identified. An elongate anterior face and predental spout in E. laurillardi allowed protrusion of a long narrow tongue at small degrees of gape, reflecting a probably ancestral xenarthran condition. Gape minimisation, in conjunction with the mediolaterally directed masticatory stroke in E. laurillardi, was a unique solution to increase masticatory efficiency by permitting molariform tooth shearing surfaces to remain in or near occlusion for a greater percentage of each chewing cycle.  相似文献   

2.
The new genus and species Ahytherium aureum (Mammalia, Xenarthra, Megalonychidae) from the Quaternary of Poço Azul (Bahia, Brazil) is described. It is the first Brazilian megalonychid known from reasonably complete and well-preserved remains. Purported Brazilian megalonychids described in the past, such as Ocnopus gracilis and Xenocnus cearesis, are noted as belonging to other sloth clades, and the acceptance by past paleontologists of the existence of ‘strange’ megalonychids in Brazil is shown to be erroneous. Ahytherium aureum, in fact, exhibits typical megalonychid morphology. It differs from other known members of Megalonychidae in several characters, including a markedly shortened, but high rostral region, with dorsally inflated frontals, wide zygomatic processes of the frontal, narrow, blade-like and anterolaterally oriented lacrimals, curved, slender and oval caniniforms, gracile humerus with less developed deltopectoral shelf, and relatively distal position of the greater trochanter of the femur. A second specimen from São Paolo state is tentatively assigned to the new genus and species.  相似文献   

3.
The form and function of the masticatory apparatus of the fossil genera Vassallia and Holmesina are analyzed so that the possible dietary behaviors of these pampathere xenarthrans might be inferred. Analysis is based on comparisons of dental morphology and skeletal features (through RFTRA) associated with the masticatory musculature among the pampatheres, the extant dasypodids Euphractus and Dasypus, and the glyptodont Propalaeohoplophorus. A method is proposed for generating a moment arm of the massetericus independently of the muscle's line of action, which allows direct comparison among extant and fossil mammals. The masticatory apparatus of the pampatheres strongly resembles that of Euphractus among extant forms, but the development of muscular attachment sites indicates a more powerful musculature, particularly the massetericus; the taxa differ most markedly in dental morphology. Long moment arms about the jaw joint and large ratios of muscle to bite moments indicate forceful rather than quick movements. The various skeletal and dental features analyzed suggest that the masticatory apparatus of the pampatheres was more powerful and efficient in transverse chewing than in dasypodids and that they were primarily grazers consuming mainly coarse vegetation. These features, some shared with herbivorous ungulates, include wide, relatively flat mandibular condyles; condyles well dorsal to muscular insertion sites; expanded angular processes; unfused symphysis; a posteriorly extended tooth row; open-rooted teeth; mesial teeth that bear mainly transverse striations; distal teeth that are mesiodistally elongated, bear basined occlusal surfaces, and in Vassallia possess a central island of resistant dentine that acted as a functional analogue of an ectoloph; and teeth with a stepwise arrangement. The results of this study indicate that detailed analysis and comparison of morphology lead to useful predictions of behavior.  相似文献   

4.
This study is undertaken in order to evaluate specific hypotheses of relationship among extant and extinct sloths (Mammalia, Xenarthra, Tardigrada). Questions of particular interest include the relationship among the three traditional family groupings of extinct ground sloths and the monophyletic or diphyletic origin of the two genera of extant tree sloths. A computer‐based cladistic investigation of the phylogenetic relationships among 33 sloth genera is performed based upon 286 osteological characteristics of the skull, lower jaw, dentition and hyoid arch. Characters are polarized via comparisons with the following successive outgroups, all members of the supraordinal grouping Edentata: the Vermilingua, or anteaters; the Cingulata, or armadillos and glyptodonts; the Palaeanodonta; and the Pholidota, or pangolins. The results of the analysis strongly corroborate the diphyly of living tree sloths, with the three‐toed sloth Bradypus positioned as the sister‐taxon to all other sloths, and the two‐toed sloth Choloepus allied with extinct members of the family Megalonychidae. These results imply that the split between the two extant sloth genera is ancient, dating back perhaps as much as 40 Myr, and that the similarities between the two taxa, including their suspensory locomotor habits, present one of the most dramatic examples of convergent evolution known among mammals. The monophyly of the three traditional ground sloth families Megatheriidae, Megalonychidae and Mylodontidae is confirmed in the present study, and the late Miocene–Pleistocene nothrotheres are shown to form a clade. It is suggested that this latter clade merits recognition as a distinct family‐level grouping, the family Nothrotheriidae. The monophyly of the Megatherioidea, a clade including members of the families Megatheriidae, Megalonychidae and Nothrotheriidae, is also supported. Within Megatherioidea, the families Nothrotheriidae and Megatheriidae form a monophyletic group called the Megatheria. The relationships within the families Megatheriidae and Mylodontidae are fully and consistently resolved, although the hypothesized scheme of relationships among the late Miocene to Pleistocene members of the mylodontid subfamily Mylodontinae differ strongly from any proposed by previous authors. Within the family Megalonychidae, Choloepus is allied to a monophyletic grouping of West Indian sloths, although the relationships within this clade are not fully resolved. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 140 , 255–305.  相似文献   

5.
6.
Among Glyptodontidae, Doedicurinae (late Miocene–early Holocene) includes the glyptodonts with the largest size and latest records. Doedicurinae is mainly characterised by a smooth surface of the osteoderms with large foramina, and a particular morphology of the caudal tube. All taxa except one (Doedicurus clavicaudatus) have been recognised and characterised on the basis of remains of caudal tubes and/or dorsal carapaces. This situation produced an evident overestimation of the real diversity of this group, and a taxonomic revision is needed. In fact, no Neogene skulls were known. We present and describe the first two Neogene skulls belonging to Doedicurinae (cf. Eleutherocercus antiquus). The materials come from the El Polvorín and Chapadmalal Formations, in the surroundings of Olavarría and Mar del Plata localities, respectively (Buenos Aires province, Argentina). A cladistic analysis was carried out in order to situate these materials among Glyptodontidae and inferring new synapomorphies at skull level in Doedicurinae. Cf. Eleutherocercus antiquus clusters with the Pleistocene species Doedicurus clavicaudatus showing three unambiguous synapomorphies, which in turn represents the first skull synapomorphies for Doedicurinae. Finally, the presence of cf. Eleutherocercus antiquus in the El Polvorín and Chapadmalal Formations suggests that the stratigraphic distribution of this species could include the Montehermosan–Chapadmalalan interval.  相似文献   

7.
The hyoid apparatus reflects aspects of the form and function of feeding in living and extinct organisms and, despite the availability of information about this structure for Xenarthra, it remains little explored from an evolutionary perspective. Here we compare the morphology of the hyoid apparatus in xenarthrans, describing its general morphology and variation in each major clade and score these variations as phylogenetic characters, which were submitted to ancestral states reconstructions. The general hyoid morphology of Xenarthra consists of a v-bone (basihyal fused with the thyrohyals) and three paired bones (stylohyal, epihyal and ceratohyal), which are unfused in the majority of taxa. The clade-specific morphology observed here, allowed us to obtain additional synapomorphies for all major clades of Xenarthra (Cingulata, Pilosa, Folivora and Vermilingua), for Glyptodontididae, and for Nothrotheriidae. The fusion of hyoid elements are convergentelly achieved among the diphyletic extant tree sloths, some extinct ground sloths and glyptodontids. Despite the heavy influence of adaptive evolution related to feeding habits, the morphology of the hyoid apparatus proved to be a valuable source of phylogenetic information.  相似文献   

8.
The record of South-American Pleistocene Megalonychidae is scarce. Of the species described for intertropical Brazil, including Megalonyx sp., Ocnopus gracilis, Valgipes deformis, Xenocnus cearensis and Ahytherium aureum, only the last, recently described, is valid. The new megalonychid species described here was recovered from the same locality as Ah. aureum. The latter is apparently more closely linked to the North-American Pleistocene forms whereas Australonyx aquae may be more closely related to the Antillean sloths. The fossil remains of extant taxa recovered in association with the new sloth species suggest that the region, currently within the Caatinga biome, was a mosaic of the Atlantic Forest and Savannah biomes during the final stages of the Pleistocene.  相似文献   

9.
The phylogeny of mylodontid sloths has recently been the subject of multiple studies. Contrasting hypotheses have been proposed, especially for the relationships among late Miocene–Pleistocene mylodontines and lestodontines. In this paper, a new and detailed phylogenetic analysis is conducted, after adding new characters and taxa previously unexplored from a phylogenetic point of view. New features derived from postcranial skeletal anatomy are added to previous studies based on craniodental evidence. In this way, the current reappraisal represents the first exhaustive phylogenetic study on the Mylodontidae that incorporates features coded for the entire skeleton. When available, multiple specimens of each bony element are observed for each operational taxonomic unit, in order to take into account intraspecific variation. The taxonomic sample of this study considers Mylodontinae at the specific level. However, many other Mylodontidae are considered, and their phylogenetic relationships tested. The taxonomic sample of this study is enriched with new taxa from central and northern South America, with the aim of compensating for the knowledge bias in favour of austral mylodontids, which have historically been more extensively studied than those from tropical latitudes. Special emphasis is given to the phylogenetic relationships of Mylodontinae, and particularly to the mylodontine and lestodontine sloths, that are recovered in the present study as monophyletic clades, and together form a larger monophyletic group. According to the present results, the Mylodontini–Lestodontini split occurred at the middle–late Miocene transition, giving rise to independent adaptive radiations across South and North America.  相似文献   

10.
The musculoskeletal feeding apparatus of anteaters in the family Myrmecophagidae (Eutheria: Xenarthra) is described, compared among the three extant genera (Tamandua, Myrmecophaga, Cyclopes), and interpreted in a phylogenetic framework. Character polarities are assessed with reference to other xenarthrans, eutherians, and didelphid marsupials. Xenarthrans are widely regarded as basal eutherians, and this is reflected in the apparent retention of plesiomorphic character states in jaw and pharyngeal musculature. Jaw closing muscles are architecturally simple, the stylohyoideus is absent, the stylopharyngeus is robust and architecturally complex, and the superior pharyngeal constrictor is weak. At the same time, the highly specialized trophic ecology of myrmecophagids is reflected in derived features of the jaw, tongue, and palatal musculature. The sternomandibularis is present, the tongue is largely composed of a sternog-lossus with no attachments to the hyoid apparatus, other glossus muscles are modified and do not enter the tongue, and the mylohyoideus and stylopharyngeus contribute to the soft palate, while other palatal muscles vary among the myrmecophagid genera. Feeding apparatus mycology provides further support for myrmecophagid monophyly. Documentation of the morphological transformations that lead to the myrmecophagid condition is hampered by incomplete data on feeding apparatus structure in nonmyrmecophagid xenarthrans (sloths and armadillos) but a tentative character mapping onto an independently derived phylogeny is offered.  相似文献   

11.
Previous works about comparative spermatology in Dasypodidae determined that sperm morphology is a striking variable among genera. It was suggested that this sperm feature may be related to specific morphologies of the female reproductive tract. The present comparative study of the morphology of the female genital tract from seven species corresponding to six genera of Dasypodidae is aimed to determine the main similarities and differences between the species and to establish a possible correlation with the sperm shapes and sizes. Genital tracts were studied macroscopically and histologically. Dasypus hybridus has disk-shaped ovaries and the cortex occupies almost all the organ with a single oocyte in each follicle. Tolypeutes matacus, Chaetophractus villosus, Chaetophractus vellerosus, Zaedyus pichiy, Cabassous chacoensis and Clamyphorus truncatus possess ovoid and elongated ovaries, with both longitudinally polarized cortex and medulla, and the peculiar presence of several oocytes in the same follicle. D. hybridus and T. matacus have a simple pear-shaped uterus, but in the other species the uterus is pyramid shaped and bicornuate. The uterine cervix is very long in all studied species. Only T. matacus presents a true vagina as in most eutherian mammals; on the other hand, in the other species a urogenital sinus is observed. The structure of female reproductive tracts in Dasypodidae contains a mixture of assumedly primary and other derived features. According to the different morphologies of the regions analyzed, a classification of the female genital tracts in three groups can be performed (group 1: Dasypus; group 2: Tolypeutes; group 3: Chaetophractus, Zaedyus, Cabassous, Clamyphorus) and a correlation between each group and a specific sperm morphology can be established.  相似文献   

12.
A cladistic investigation of the phylogenetic relationships among the three extant anteater genera and the three undoubted extinct myrmecophagid genera is performed based upon osteological characteristics of the skull and postcranial skeleton. One hundred seven discrete morphological characters are analyzed using the computer program PAUP. Characters are polarized via comparison to the successive xenarthran outgroups Tardigrada (represented by the living sloth Bradypus) and Cingulata (represented by the recent armadillos Dasypus and Euphractus). The analysis results in a single most-parsimonious tree (TL = 190, CI = 0.699, RI = 0.713). The tree corroborates the monophyly of the subfamilies Cyclopinae and Myrmecophaginae, the former including the extant Cyclopes and the Pliocene genus Palaeomyrmidon. Within the Myrmecophaginae the Miocene genus Protamandua is the sister taxon to a clade including the remaining three genera. The recent Tamandua is in turn the sister taxon to the extant Myrmecophaga plus the Pliocene genus Neotamandua. Contrary to the suggestions of recent authors, weak support is provided for the taxonomic distinctiveness of the latter genus from the recent Myrmecophaga. The monophyly of the Myrmecophagidae is supported by 15 unequivocal synapomorphies. The monophyly of the Cyclopinae and Myrmecophaginae is supported by 3 and 13 unambiguous synapomorphies, respectively. The enigmatic Eocene genus Eurotamandua, from the Messel fauna of Germany, is coded for the 107 morphological characters above and included in two subsequent PAUP analyses. The palaeanodont Metacheiromys is also added to these two analyses as a nonxenarthran outgroup to test for the possibility that Eurotamandua lies outside the Xenarthra. In the first analysis, Eurotamandua is constrained a priori to membership in the Vermilingua. The single most-parsimonious tree (TL = 224, CI = 0.618) that results places Eurotamandua as the sister group to the remaining anteater genera, contra Storch and Habersetzer's (1991) assignment of Eurotamandua to the vermilinguan subfamily Myrmecophaginae. Eurotamandua shares six unequivocal synapomorphies with other anteaters, including the absence of teeth and the presence of a lateral tuberosity on the fifth metatarsal. The remaining vermilinguans are united by 11 unequivocal synapomorphies, plus an additional 10 ambiguous synapomorphies. In the second analysis, the position of Eurotamandua is unconstrained. The resulting single most-parsimonious tree (TL = 219, CI = 0.632) places Eurotamandua outside Vermilingua as the sister group to the Pilosa (Vermilingua plus Bradypus). The monophyly of this node is supported by four unambiguous synapomorphies in the unconstrained analysis. Further manipulation of this second analysis shows that placement of Eurotamandua as the sister group to the Xenarthra or to the Palaeanodonta adds three steps to the shortest tree but is more parsimonious than its placement as a sister group to the Vermilingua is the previous analysis. The addition of pangolins to the analysis does little to alter the major phylogenetic conclusions of the study. The allocation of Eurotamandua to the Xenarthra, but as a sister group to the Pilosa, is a novel arrangement which leaves open the biogeographic question of how a xenarthran reached Western Europe during the Eocene.  相似文献   

13.
Sloths (Bradypus sp.) are extremely sensitive animals that suffer with the destruction and fragmentation of forests. They present a low population growth rate and need to be further studied for the preservation of the specie. Thus, the aim of this study was to establish an efficient semen collection protocol as well as characterize sperm concentration, motility and morphology in order to contribute with information about the reproductive traits of this specie, which has never been described in the literature before. For that, nine Bradypus tridactylus males were captured during the wet season and six during the dry season, in Manaus (AM), located in the north region of Brazil, semen was collected by electroejaculation with shocks given in sequences of progressive intensities (minimum 20 mA and maximum 60 mA). All animals ejaculated small volumes of semen and in some of them, the volume ejaculated was not enough for a complete spermiogram. Physical characteristics observed on the collections of the wet season were different from those seen in the specimen collected in the dry season. Motility an vigor was very low and did not show forward progression, only oscillatory movement. After Spermac stain, spermatozoa presented a wide variety of defects; however, the differences in morphology were not significant between seasons. The morphology assessed by scanning electron microscopy shows that the head in both groups could be elongated, short or could have a base narrower than the apex and the midpiece narrowed abruptly, forming a nip in its transition to the tail. Although further studies are necessary to verify our preliminary findings concerning seasonal variation in sperm quality, these results demonstrate that semen can be safely collected from sloths by electroejaculation and provide the first reports of semen characteristics in this species.  相似文献   

14.
The giant megatheriine ground sloth Eremotherium eomigrans is described based on remains from the late Blancan to early Irvingtonian (late Pliocene to early Pleistocene) of Florida. It resembles the other giant megatheriines E. laurillardi and Megatherium americanum in size, but is clearly distinguished by a pentadactyl manus. It is assigned to the genus Eremotherium based on two ynapomorphies shared with E. laurillardi: a coarse and rugose ectotympanic that ventrally is prominently expanded mediolaterally, and contiguous articular facets of the axis for the atlas. E. eomigrans is the earliest megatheriine known to have migrated to North America across the Panamanian Land Bridge during the Great American Interchange.  相似文献   

15.
The Xenarthra, particularly the Tardigrada, are with the Notoungulata and Marsupialia among the most diversified South American mammals. Lujanian South American Land Mammal Age localities from the coastal Piedra Escrita site and Andean Casa del Diablo Cave, Peru, have yielded three specimens of the Megalonychidae Diabolotherium nordenskioldi gen. nov. This singular fossil sloth exhibits a peculiar mosaic of cranial and postcranial characters. Some are considered convergent with those of other sloths (e.g. 5/4 quadrangular teeth, characteristic of Megatheriidae), whereas others clearly indicate climbing capabilities distinct from the suspensory mode of extant sloths. The arboreal mode of life of D. nordenskioldi is suggested by considerable mobility of the elbow, hip, and ankle joints, a posteriorly convex ulna with an olecranon shorter than in fossorial taxa, a radial notch that faces more anteriorly than in other fossil sloths and forms an obtuse angle with the coronoid process (which increases the range of pronation–supination), a proximodistally compressed scaphoid, and a wide range of digital flexion. D. nordenskioldi underscores the great adaptability of Tardigrada: an arboreally adapted form is now added to the already known terrestrial, subarboreal, and aquatic (marine and freshwater) fossil sloths. A preliminary phylogenetic analysis of the Tardigrada confirmed the monophyly of Megatherioidea, Nothrotheriidae, Megatheriidae, and Megalonychidae, in which Diabolotherium is strongly nested.  © 2007 The Linnean Society of London, Zoological Journal of the Linnean Society , 2007, 149 , 179–235.  相似文献   

16.
In this study, the hindlimb of 12 species of tupaiids was analyzed functionally and compared to that of primates, dermopterans, and chiropterans. Many aspects of the tupaiid hindlimb vary in relation to differential substrate use. These differences include width of the ilium, shape of the acetabulum, size of the anterior inferior iliac spine, size of the greater and third trochanters, depth of the femoral condyles, shape of the patellar groove, and size of the tibial tuberosity. The hindlimb of the arboreal Ptilocercus lowii, the only ptilocercine, is better adapted for arboreal locomotion, whereas that of tupaiines is better adapted for rapid terrestrial (or scansorial) locomotion. The hindlimb of Ptilocercus seems to be habitually flexed and has more joint mobility, a condition necessary for movement on uneven, discontinuous arboreal supports. The tarsus of Ptilocercus facilitates inversion of the foot and its grasping hallux is capable of a great range of abduction. Tupaiines, on the other hand, are characterized by more extended hindlimbs and less mobility in their joints. These restricted joints limit movements more to the parasagittal plane, which increases the efficiency of locomotion on a more even and continuous surface like the ground. The hindlimb of tupaiines is adapted for powerful flexion and extension. Even the most arboreal tupaiines remain similar to terrestrial tupaiines in their hindlimb morphology, which probably reflects the terrestrial ancestry of Tupaiinae (but not Tupaiidae). Many attributes of the tupaiid hindlimb, especially those of the foot, reflect the arboreal ancestry of Tupaiidae and it is proposed that the ancestral tupaiid was arboreal like Ptilocercus. Also, compared to the hindlimb character states of tupaiines, those of Ptilocercus are more similar to those of other archontans, and it is proposed that the hindlimb features of Ptilocercus are primitive for the Tupaiidae. Hence, Ptilocercus should be considered in any phylogenetic analysis that includes Scandentia.  相似文献   

17.
In this study, the forelimb of 12 species of tupaiids was analyzed functionally and compared to that of other archontan mammals. Several differences that relate to differential substrate use were found in the forelimb morphology of tupaiids. These differences included shape of the scapula, length and orientation of the coracoid process, size of the lesser tuberosity, shape of the capitulum, length of the olecranon process, and shape of the radial head and central fossa. The forelimb of the arboreal Ptilocercus lowii, the only ptilocercine, is better adapted for arboreal locomotion, while that of tupaiines is better adapted for terrestrial (or scansorial) locomotion. While the forelimb of the arboreal Ptilocercus appears to be habitually flexed and exhibits more mobility in its joints, a necessity for movement on uneven, discontinuous arboreal supports, all tupaiines are characterized by more extended forelimbs and less mobility in their joints. These restricted joints limit movements more to the parasagittal plane, which increases the efficiency of locomotion on a more even and continuous surface like the ground. Even the most arboreal tupaiines remain similar to their terrestrial relatives in their forelimb morphology, which probably reflects the terrestrial ancestry of Tupaiinae (but not Tupaiidae). The forelimb of Urogale everetti is unique among tupaiines in that it exhibits adaptations for scratch-digging. Several features of the tupaiid forelimb reflect the arboreal ancestry of Tupaiidae and it is proposed that the ancestral tupaiid was arboreal like Ptilocercus. Also, compared to the forelimb character states of tupaiines, those of Ptilocercus are more similar to those of other archontans and it is proposed that the attributes of the forelimb of Ptilocercus are primitive for the Tupaiidae. Hence, Ptilocercus should be considered in any phylogenetic analysis that includes Scandentia.  相似文献   

18.
A new species of dasypodid armadillo (Xenarthra, Cingulata), Anadasypus aequatorianus, from the late Miocene of Ecuador is described. The remains were collected in sediments of the Letrero Formation, Nabón Basin, which is part of several intermontane basins related to Andean uplift. The genus represents the oldest record of Dasypodini, which also encompasses Propraopus (Pleistocene–early Holocene) and Dasypus (?Miocene–Recent). The new species is based on several osteoderms, which show more derived features than Anadasypus hondanus, from the middle Miocene of Colombia. In order to test the affinities of A. aequatorianus within Dasypodini, we conducted a cladistic analysis of 24 morphological characters for 10 taxa. The most parsimonious tree supports the generic attribution of the new species and places Anadasypus basal to Propraopus and Dasypus, agreeing with the stratigraphic evidence. The faunas from tropical Andean areas differ noticeably from the better-known assemblages of the classic South American sequences. In the case of dasypodines, their geochronological distribution shows that they were historically restricted to tropical and subtropical environments and the main cladogenetic events of the group probably occurred at lower latitudes. In this context, the taxon described herein fills important temporal and geographic gaps of early Neogene armadillos from intertropical areas.http://www.zoobank.org/urn:lsid:zoobank.org:pub:9DC76603-D831-4E68-BE55-90113228E0F4  相似文献   

19.
Armadillos comprise a particular group of armoured animals whose functional morphology of locomotion remains unclear. For the first time, the kinematic patterns of Dasypus novemcinctus are analysed. Eight specimens of nine-banded armadillos were studied at a research institute in São Paulo State, Brazil. The individuals were induced to cross a horizontal corridor and each gait performed during the time each of them was kept inside this structure was recorded to a detailed analysis posteriorly performed in a computer program. Four parameters regarding speed range were considered: stride frequency (Hz) (1/stride period), stride length (m), speed (ms−1) and duty factor (%). A total of 89 strides have been analysed among symmetrical (60.6%) and asymmetrical gaits (39.4%), and six footfall patterns were here reported as follows: lateral sequences (symmetrical), transverse gallop, canter, bound, half-bound and crutch walk (asymmetrical). This kind of analysis implements our knowledge on the locomotory aspects of these animals, hence contributing to the improvement of our knowledge on this still poorly known group.  相似文献   

20.
An intramembranous ossification at the anterior end of the cartilaginous nasal capsule is described for the first time in prenatal specimens of the anteaterTamandua and the slothCholoepus and redescribed in prenatal specimens of the armadillosDasypus andZaedyus. From comparisons of this bone with the septomaxilla of monotremes and various Mesozoic mammals, it is concluded that (1) the bone inTamandua andCholoepus is homologous with the central part (processus ascendens) of the bone inDasypus, Zaedyus, and other armadillos and (2) the xenarthran processus ascendens, in turn, is homologous with the central part of the septomaxilla of monotremes and various Mesozoic mammals. Therefore, the bone in question in xenarthrans is a true septomaxilla. It is further concluded that the armadillo septomaxilla has two neomorphic components: a lamina palatina beneath the cartilaginous nasal floor and a processus intrafenestralis extending rostrally into the nasal fossa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号