首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archosaurs evolved a wide diversity of locomotor postures, body sizes, and hip joint morphologies. The two extant archosaurs clades (birds and crocodylians) possess highly divergent hip joint morphologies, and the homologies and functions of their articular soft tissues, such as ligaments, cartilage, and tendons, are poorly understood. Reconstructing joint anatomy and function of extinct vertebrates is critical to understanding their posture, locomotor behavior, ecology, and evolution. However, the lack of soft tissues in fossil taxa makes accurate inferences of joint function difficult. Here, we describe the soft tissue anatomies and their osteological correlates in the hip joint of archosaurs and their sauropsid outgroups, and infer structural homology across the extant taxa. A comparative sample of 35 species of birds, crocodylians, lepidosaurs, and turtles ranging from hatchling to skeletally mature adult were studied using dissection, imaging, and histology. Birds and crocodylians possess topologically and histologically consistent articular soft tissues in their hip joints. Epiphyseal cartilages, fibrocartilages, and ligaments leave consistent osteological correlates. The archosaur acetabulum possesses distinct labrum and antitrochanter structures on the supraacetabulum. The ligamentum capitis femoris consists of distinct pubic‐ and ischial attachments, and is homologous with the ventral capsular ligament of lepidosaurs. The proximal femur has a hyaline cartilage core attached to the metaphysis via a fibrocartilaginous sleeve. This study provides new insight into soft tissue structures and their osteological correlates (e.g., the antitrochanter, the fovea capitis, and the metaphyseal collar) in the archosaur hip joint. The topological arrangement of fibro‐ and hyaline cartilage may provide mechanical support for the chondroepiphysis. The osteological correlates identified here will inform systematic and functional analyses of archosaur hindlimb evolution and provide the anatomical foundation for biomechanical investigations of joint tissues. J. Morphol. 276:601–630, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Abstract:  During the Triassic, some 250–200 million years ago, the basal archosaurs showed a transition from sprawling to erect posture. Past studies focused on changes in bone morphology, especially on the joints, as they reorientated from a sprawling to an erect posture. Here we introduce a biomechanical model to estimate the magnitude of femur stress in different postures, in order to determine the most reasonable postures for five basal archosaurs along the line to crocodiliforms (the rhynchosaur Stenaulorhynchus , the basal archosaur Erythrosuchus , the 'rauisuchian' Batrachotomus , the aetosaurs Desmatosuchus and Typothorax ). The results confirm a sprawling posture in basal taxa and an erect posture in derived taxa. Erect posture may have evolved as a strategy to reduce large bending stresses on the limb bone caused by heavy body weights in larger forms.  相似文献   

3.
Using an inverse dynamics biomechanical analysis that was previously validated for extant bipeds, I calculated the minimum amount of actively contracting hindlimb extensor muscle that would have been needed for rapid bipedal running in several extinct dinosaur taxa. I analyzed models of nine theropod dinosaurs (including birds) covering over five orders of magnitude in size. My results uphold previous findings that large theropods such as Tyrannosaurus could not run very quickly, whereas smaller theropods (including some extinct birds) were adept runners. Furthermore, my results strengthen the contention that many nonavian theropods, especially larger individuals, used fairly upright limb orientations, which would have reduced required muscular force, and hence muscle mass. Additional sensitivity analysis of muscle fascicle lengths, moment arms, and limb orientation supports these conclusions and points out directions for future research on the musculoskeletal limits on running ability. Although ankle extensor muscle support is shown to have been important for all taxa, the ability of hip extensor muscles to support the body appears to be a crucial limit for running capacity in larger taxa. I discuss what speeds were possible for different theropod dinosaurs, and how running ability evolved in an inverse relationship to body size in archosaurs.  相似文献   

4.
Ornithischian dinosaurs were primitively bipedal with forelimbs modified for grasping, but quadrupedalism evolved in the clade on at least three occasions independently. Outside of Ornithischia, quadrupedality from bipedal ancestors has only evolved on two other occasions, making this one of the rarest locomotory transitions in tetrapod evolutionary history. The osteological and myological changes associated with these transitions have only recently been documented, and the biomechanical consequences of these changes remain to be examined. Here, we review previous approaches to understanding locomotion in extinct animals, which can be broadly split into form–function approaches using analogy based on extant animals, limb‐bone scaling, and computational approaches. We then carry out the first systematic attempt to quantify changes in locomotor muscle function in bipedal and quadrupedal ornithischian dinosaurs. Using three‐dimensional computational modelling of the major pelvic locomotor muscle moment arms, we examine similarities and differences among individual taxa, between quadrupedal and bipedal taxa, and among taxa representing the three major ornithischian lineages (Thyreophora, Ornithopoda, Marginocephalia). Our results suggest that the ceratopsid Chasmosaurus and the ornithopod Hypsilophodon have relatively low moment arms for most muscles and most functions, perhaps suggesting poor locomotor performance in these taxa. Quadrupeds have higher abductor moment arms than bipeds, which we suggest is due to the overall wider bodies of the quadrupeds modelled. A peak in extensor moment arms at more extended hip angles and lower medial rotator moment arms in quadrupeds than in bipeds may be due to a more columnar hindlimb and loss of medial rotation as a form of lateral limb support in quadrupeds. We are not able to identify trends in moment arm evolution across Ornithischia as a whole, suggesting that the bipedal ancestry of ornithischians did not constrain the development of quadrupedal locomotion via a limited number of functional pathways. Functional anatomy appears to have had a greater effect on moment arms than phylogeny, and the differences identified between individual taxa and individual clades may relate to differences in locomotor performance required for living in different environments or for clade‐specific behaviours.  相似文献   

5.
Theropod Locomotion   总被引:1,自引:0,他引:1  
Theropod (carnivorous) dinosaurs spanned a range from chicken-sizedto elephant-sized animals. The primary mode of locomotion inthese dinosaurs was fairly conservative: Theropods were erect,digitigrade, striding bipeds. Even so, during theropod evolutionthere were changes in the hip, tail, and hindlimb that undoubtedlyaffected the way these dinosaurs walked and ran, a trend thatreached its extreme in the evolution of birds. Some derivednon-avian theropods developed hindlimb proportions that suggesta greater degree of cursoriality than in more primitive groups.Despite this, fossilized trackways provide no evidence for changesin stride lengths of early as opposed to later non-avian theropods.However, these dinosaurs did take relatively longer strides—atleast compared with footprint length—than bipedal ornithischiandinosaurs or ground birds. Judging from trackway evidence, non-aviantheropods usually walked, and seldom used faster gaits. Thelargest theropods were probably not as fleet as their smallerrelatives.  相似文献   

6.
Uniquely among extant vertebrates, birds possess complex respiratory systems characterised by the combination of small, rigid lungs, extensive pulmonary air sacs that possess diverticula that invade (pneumatise) the postcranial skeleton, unidirectional ventilation of the lungs, and efficient crosscurrent gas exchange. Crocodilians, the only other living archosaurs, also possess unidirectional lung ventilation, but lack true air sacs and postcranial skeletal pneumaticity (PSP). PSP can be used to infer the presence of avian-like pulmonary air sacs in several extinct archosaur clades (non-avian theropod dinosaurs, sauropod dinosaurs and pterosaurs). However, the evolution of respiratory systems in other archosaurs, especially in the lineage leading to crocodilians, is poorly documented. Here, we use μCT-scanning to investigate the vertebral anatomy of Triassic archosaur taxa, from both the avian and crocodilian lineages as well as non-archosaurian diapsid outgroups. Our results confirm previous suggestions that unambiguous evidence of PSP (presence of internal pneumatic cavities linked to the exterior by foramina) is found only in bird-line (ornithodiran) archosaurs. We propose that pulmonary air sacs were present in the common ancestor of Ornithodira and may have been subsequently lost or reduced in some members of the clade (notably in ornithischian dinosaurs). The development of these avian-like respiratory features might have been linked to inferred increases in activity levels among ornithodirans. By contrast, no crocodile-line archosaur (pseudosuchian) exhibits evidence for unambiguous PSP, but many of these taxa possess the complex array of vertebral laminae and fossae that always accompany the presence of air sacs in ornithodirans. These laminae and fossae are likely homologous with those in ornithodirans, which suggests the need for further investigation of the hypothesis that a reduced, or non-invasive, system of pulmonary air sacs may be have been present in these taxa (and secondarily lost in extant crocodilians) and was potentially primitive for Archosauria as a whole.  相似文献   

7.
The anatomy and functions of muscle-tendon complexes and their bony attachments in birds and their outgroups show how the major pelvic limb muscle groups evolved. Fossils reveal that most changes evolved after the divergence of archosaurs in the Triassic, particularly in the dinosaurian precursors to birds. Three-dimensional limb control became concentrated at the hip joint; more distal joints and muscles were restricted to flexion or extension early in dinosaur evolution. Hip extensors expanded even though the primary femoral retractor M. caudofemoralis longus was reduced. Hip flexors and two-joint "hamstring" muscles were simplified to a few large heads. Knee extensors increased their sizes and moment arms early in bipedal dinosaurs, but the patella and cranial cnemial crest evolved later in birds. Lower limb muscles expanded as ossifications such as the hypotarsus increased their moment arms. The ossification of lower limb tendons, particularly in extensors, is a recent novelty of birds. Muscles and tendons that develop large forces, stresses, and moments to stabilize or move the limbs became increasingly prominent on the line to birds. Locomotion evolved in a stepwise pattern that only recently produced the derived limb control mechanisms of crown-group birds, such as the strongly flexed hip and knee joints.  相似文献   

8.
Birds and crocodylians, the only living archosaurs, are generally believed to employ pelvic girdle movements as a component of their respiratory mechanism. This in turn provides a phylogenetic basis for inferring that extinct archosaurs, including dinosaurs, also used pelvic girdle breathing. I examined lung ventilation through cineradiography (high-speed X-ray filming) and observed that alligators indeed rotate the pubis to increase tidal volume, but did not observe pelvic girdle movement contributing to lung ventilation in guinea fowl, emus or tinamous, despite extensive soft-tissue motion. Re-examination of fossil archosaurs reveals that pubic rotation evolved in basal crocodyliforms and that pelvic girdle breathing is not a general archosaurian mechanism. The appearance of pelvic aspiration in crocodyliforms is a striking example of the ability of amniotes to increase gas exchange or circumvent constraints on respiration through the evolution of novel accessory breathing mechanisms.  相似文献   

9.
Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This “lost anatomy” is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that large cartilaginous epiphyses were widely distributed among non-avian archosaurs and must be considered when making inferences about locomotor functional morphology in fossil taxa.  相似文献   

10.
In recent years the hypothesis that pterosaurs were the major sister-group of dinosaurs and a closely-linked hypothesis that pterosaurs evolved flight from the ground up have gained general acceptance. A cladistic analysis of the Archosauromorpha using characters presented by previous workers results in a single most parsimonious tree with the Pterosauria as the major sister-group of the Dinosauria. However, that sister-group relationship is supported only by a suite of hindlimb characters that are correlated with bipedal digitigrade locomotion in dinosaurs. In pterosaurs the characters have been interpreted as correlates of bipedal cursorial locomotion, arboreal leaping, or involvement of the hindlimb in the wing. The homology of those characters in dinosaurs and pterosaurs cannot be supported. Reanalysis of the data after exclusion of those hindlimb characters results in most parsimonious trees with the Pterosauria as the sister-group of the Erythrosuchidae + Proterochampsidae + Euparkeria + Archosauria, in that order. This sister-group relationship is supported by a diverse assemblage of functionally independent skeletal characters from all regions of the skeleton. The results of the analysis cast doubt on the hypothesis that pterosaurs evolved flight from the ground up.  相似文献   

11.
12.
Adding new taxa to morphological phylogenetic analyses without substantially revising the set of included characters is a common practice, with drawbacks (undersampling of relevant characters) and potential benefits (character selection is not biased by preconceptions over the affinities of the ‘retrofitted’ taxon). Retrofitting turtles (Testudines) and other taxa to recent reptile phylogenies consistently places turtles with anapsid‐grade parareptiles (especially Eunotosaurus and/or pareiasauromorphs), under both Bayesian and parsimony analyses. This morphological evidence for turtle–parareptile affinities appears to contradict the robust genomic evidence that extant (living) turtles are nested within diapsids as sister to extant archosaurs (birds and crocodilians). However, the morphological data are almost equally consistent with a turtle–archosaur clade: enforcing this molecular scaffold onto the morphological data does not greatly increase tree length (parsimony) or reduce likelihood (Bayesian inference). Moreover, under certain analytic conditions, Eunotosaurus groups with turtles and thus also falls within the turtle–archosaur clade. This result raises the possibility that turtles could simultaneously be most closely related to a taxon traditionally considered a parareptile (Eunotosaurus) and still have archosaurs as their closest extant sister group.  相似文献   

13.
Living archosaurs comprise birds (dinosaurs) and crocodylians (suchians). The morphological diversity of birds and stem group dinosaurs is tremendous and well-documented. Suchia, the archosaurian group including crocodylians, is generally considered more conservative. Here, we report a new Late Triassic suchian archosaur with unusual, highly specialized features that are convergent with ornithomimid dinosaurs. Several derived features of the skull and postcranial skeleton are identical to conditions in ornithomimids. Such cases of extreme convergence in multiple regions of the skeleton in two distantly related vertebrate taxa are rare. This suggests that these archosaurs show iterative patterns of morphological evolution. It also suggests that this group of suchians occupied the adaptive zone that was occupied by ornithomimosaurs later in the Mesozoic.  相似文献   

14.
An adult male chimpanzee in the natural habitat has been observed to walk predominantly bipedally after a total forelimb paralysis in 1966. The major differences from previously described bipedal chimpanzee gait are (1) one third of the femoral extension is posterior to the hip joint in propulsion, (2) excursion of the swinging foot is close to midline, due to adduction of the lower hindlimb in swing and propulsive phases, (3) depressed pelvic tilt is on the side of the swinging limb, (4) thoracic vertebrae rotate and are vertical and erect, and (5) there is only a moderate lateral sway of the midline. This locomotory complex is interpreted as individual variability and suggests an evolutionary model for the origin of hominid bipedal locomotion.  相似文献   

15.
Three possible hypotheses could explain the polarity of the histological features of basal archosauriform and archosauromorph reptiles: either, the fibrolamellar complex is basal; or, the lamellar-zonal complex is basal or finally, the condition varied, and each complex evolved more than once in these early groups. The answer to this question would have broad implications for our understanding of the physiological, ecological, and behavioral features of the first archosaurs. To this end, we sampled the bone histology of various archosauriforms and basal archosaurs from the Triassic and Lower Jurassic: erythrosuchids, proterochampsids, euparkeriids, and basal ornithischian dinosaurs, including forms close to the origin of archosaurs but poorly assessed phylogenetically. The new data suggest that the possibility of reaching and maintaining very high growth rates through ontogeny could have been a basal characteristic of archosauriforms. This was partly retained (at least during early ontogeny) in most lineages of Triassic pseudosuchians, which nevertheless generally relied on lower growth rates to reach large body sizes. This trend to slower growth seems to have been further emphasized among Crocodylomorpha, which may thus have secondarily reverted toward more generalized reptilian growth strategies. Accordingly, their “typical ectothermic reptilian condition” may be a derived condition within archosauriforms, homoplastic to the generalized physiological condition of basal amniotes. On the other hand, ornithosuchians apparently retained and even enhanced the high growth rates of many basal archosauriforms during most of their ontogenetic trajectories. The Triassic may have been a time of “experimentation” in growth strategies for several archosauriform lineages, only one of which (ornithodirans) eventually stayed with the higher investment strategy successfully.  相似文献   

16.
In this article, we develop a new reconstruction of the pelvic and hindlimb muscles of the large theropod dinosaur Tyrannosaurus rex. Our new reconstruction relies primarily on direct examination of both extant and fossil turtles, lepidosaurs, and archosaurs. These observations are placed into a phylogenetic context and data from extant taxa are used to constrain inferences concerning the soft-tissue structures in T. rex. Using this extant phylogenetic bracket, we are able to offer well-supported inferences concerning most of the hindlimb musculature in this taxon. We also refrain from making any inferences for certain muscles where the resulting optimizations are ambiguous. This reconstruction differs from several previous attempts and we evaluate these discrepancies. In addition to providing a new and more detailed understanding of the hindlimb morphology of T. rex--the largest known terrestrial biped--this reconstruction also helps to clarify the sequence of character-state change along the line to extant birds.  相似文献   

17.
The origin and early evolution of birds   总被引:9,自引:0,他引:9  
Birds evolved from and are phylogenetically recognized as members of the theropod dinosaurs; their first known member is the Late Jurassic Archaeopteryx, now represented by seven skeletons and a feather, and their closest known non-avian relatives are the dromaeosaurid theropods such as Deinonychus. Bird flight is widely thought to have evolved from the trees down, but Archaeopteryx and its outgroups show no obvious arboreal or tree-climbing characters, and its wing planform and wing loading do not resemble those of gliders. The ancestors of birds were bipedal, terrestrial, agile, cursorial and carnivorous or omnivorous. Apart from a perching foot and some skeletal fusions, a great many characters that are usually considered ‘avian’ (e.g. the furcula, the elongated forearm, the laterally flexing wrist and apparently feathers) evolved in non-avian theropods for reasons unrelated to birds or to flight. Soon after Archaeopteryx, avian features such as the pygostyle, fusion of the carpometacarpus, and elongated curved pedal claws with a reversed, fully descended and opposable hallux, indicate improved flying ability and arboreal habits. In the further evolution of birds, characters related to the flight apparatus phylogenetically preceded those related to the rest of the skeleton and skull. Mesozoic birds are more diverse and numerous than thought previously and the most diverse known group of Cretaceous birds, the Enantiornithes, was not even recognized until 1981. The vast majority of Mesozoic bird groups have no Tertiary records: Enantiornithes, Hesperornithiformes, Ichthyornithiformes and several other lineages disappeared by the end of the Cretaceous. By that time, a few Linnean ‘Orders’ of extant birds had appeared, but none of these taxa belongs to extant ‘families’, and it is not until the Paleocene or (in most cases) the Eocene that the majority of extant bird ‘Orders’ are known in the fossil record. There is no evidence for a major or mass extinction of birds at the end of the Cretaceous, nor for a sudden ‘bottleneck’ in diversity that fostered the early Tertiary origination of living bird ‘Orders’.  相似文献   

18.
19.
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.  相似文献   

20.
Eutherian mammals and saurischian dinosaurs both evolved lineages of huge terrestrial herbivores. Although significantly more saurischian dinosaurs were giants than eutherians, the long bones of both taxa scale similarly and suggest that locomotion was dynamically similar. However, articular cartilage is thin in eutherian mammals but thick in saurischian dinosaurs, differences that could have contributed to, or limited, how frequently gigantism evolved. Therefore, we tested the hypothesis that sub-articular bone, which supports the articular cartilage, changes shape in different ways between terrestrial mammals and dinosaurs with increasing size. Our sample consisted of giant mammal and reptile taxa (i.e., elephants, rhinos, sauropods) plus erect and non-erect outgroups with thin and thick articular cartilage. Our results show that eutherian mammal sub-articular shape becomes narrow with well-defined surface features as size increases. In contrast, this region in saurischian dinosaurs expands and remains gently convex with increasing size. Similar trends were observed in non-erect outgroup taxa (monotremes, alligators), showing that the trends we report are posture-independent. These differences support our hypothesis that sub-articular shape scales differently between eutherian mammals and saurischian dinosaurs. Our results show that articular cartilage thickness and sub-articular shape are correlated. In mammals, joints become ever more congruent and thinner with increasing size, whereas archosaur joints remained both congruent and thick, especially in sauropods. We suggest that gigantism occurs less frequently in mammals, in part, because joints composed of thin articular cartilage can only become so congruent before stress cannot be effectively alleviated. In contrast, frequent gigantism in saurischian dinosaurs may be explained, in part, by joints with thick articular cartilage that can deform across large areas with increasing load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号