首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We aimed to assess the immunoregulatory effects of IFN‐β in patients with tuberculous pleurisy. IFN‐β, IFN‐γ and IL‐17 expression levels were detected, and correlations among these factors in different culture groups were analyzed. Pleural fluid mononuclear cells (PFMC) from tuberculous pleural effusions, but not peripheral blood mononuclear cells (PBMC) from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ. Moreover, exogenous IFN‐β significantly inhibited the expression of IL‐17 in PFMC. By contrast, IFN‐β simultaneously enhanced the levels of IFN‐γ. To further investigate the regulation of IL‐17 and IFN‐γ by endogenous IFN‐β, an IFN‐β neutralizing antibody was simultaneously added to bacillus Calmette‐Guérin (BCG)‐stimulated PFMC. IL‐17 expression was significantly increased, but IFN‐γ production was markedly decreased in the experimental group supplemented with the IFN‐β neutralizing antibody. Simultaneously, IL‐17 production was remarkably increased in the experimental group supplemented with the IFN‐γ neutralizing antibody. Taken together, in our study, we first found that freshly isolated PFMC, but not PBMC from healthy donors, spontaneously expressed IFN‐β, IL‐17 and IFN‐γ in vivo. Moreover, IFN‐β suppressed IL‐17 expression and increased IFN‐γ production. Furthermore, both IFN‐β and IFN‐γ down‐regulated IL‐17 expression. These observations suggest that caution is required when basing anti‐tuberculosis treatment on the inhibition of IFN‐β signaling.  相似文献   

2.
Tumor cells often display alterations in their normal program of cellular differentiation. A promising approach for the treatment of cancer involves the induction of terminal differentiation and a loss of proliferative capacity in cancer cells. In human melanoma cells, the combination of mezerein (MEZ) and fibroblast interferon (IFN-β), results in a rapid and irreversible suppression of cell growth with a concomitant increase in the synthesis of melanin. The induction of terminal differentiation is associated with alterations in the expression of several cellular genes, including fibronectin, ISG-15 and ISG-54, and changes in the expression of specific cell surface antigens, including intercellular adhesion molecule-1 (ICAM-1) and HLA Class I antigens. In the HO-1 human melanoma cell line, induction of terminal differentiation by MEZ plus IFN-β results in an induction and/or increased expression of ICAM-1. HLA Class I antigens and HLA Class II antigens. IFN-β and MEZ alone can modulate expression of these antigens to a lower extent than does the combination of compounds. Induction of terminal differentiation and the irreversible suppression of cell growth is not a prerequisite for antigenic modulation in HO-1 cells. This is indicated by the inability of immune interferon (IFN-γ), a strong inducer of ICAM-1, HLA Class I antigens and HLA Class II antigens synthesis, or the combination of IFN-β plus IFN-γ which synergistically but reversibly suppresses HO-1 growth. to induce melanin synthesis or terminal differentiation in HO-1 cells. The inhibitor of protein kinase C, H-7, only marginally alters 72 hr growth suppression induced by MEZ or the interferons, used alone or in combination. In several experiments, H-7 only partially and variably inhibited the enhanced expression of ICAM-1, HLA Class I antigens and HLA Class II antigens in HO-1 cells treated with MEZ. IFN-β or IFN-γ, used alone or in various combinations. This model system will be useful in defining the biochemical, genomic and antigenic changes associated with the chemical induction of terminal differentiation and the loss of proliferative capacity in human melanoma cells.  相似文献   

3.
4.
5.
Mucins are high molecular weight proteins that make up the major components of mucus. Hypersecretion of mucus is a feature of several chronic inflammatory airway diseases. MUC8 is an important component of airway mucus, and its gene expression is upregulated in nasal polyp epithelium. Little is known about the molecular mechanisms of MUC8 gene expression. We first observed overexpression of activator protein‐2alpha (AP2α) in human nasal polyp epithelium. We hypothesized that AP2α overexpression in nasal polyp epithelium correlates closely with MUC8 gene expression. We demonstrated that phorbol 12‐myristate 13‐acetate (PMA) treatment of the airway epithelial cell line NCI‐H292 increases MUC8 gene and AP2α expression. In this study, we sought to determine which signal pathway is involved in PMA‐induced MUC8 gene expression. The results show that the protein kinase C and mitogen‐activating protein/ERK kinase (MAPK) pathways modulate MUC8 gene expression. PD98059 or ERK1/2 siRNA and RO‐31‐8220 or PKC siRNA significantly suppress AP2α as well as MUC8 gene expression in PMA‐treated cells. To verify the role of AP2α, we specifically knocked down AP2α expression with siRNA. A significant AP2α knock‐down inhibited PMA‐induced MUC8 gene expression. While dominant negative AP2α decreased PMA‐induced MUC8 gene expression, overexpressing wildtype AP2α increased MUC8 gene expression. Furthermore, using lentiviral vectors for RNA interference in human nasal polyp epithelial cells, we confirmed an essential role for AP2α in MUC8 gene expression. From these results, we concluded that PMA induces MUC8 gene expression through a mechanism involving PKC, ERK1/2, and AP2α activation in human airway epithelial cells. J. Cell. Biochem. 110: 1386–1398, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The apical complex of Toxoplasma gondii enables it to invade virtually all nucleated cells in warm‐blooded animals, including humans, making it a parasite of global importance. Anti‐T. gondii cellular defence mechanisms depend largely on interferon (IFN)‐γ production by immune cells. However, the molecular mechanism of IFN‐β‐mediated defence remains largely unclear. Here, mouse peritoneal macrophages and murine embryonic fibroblasts (MEFs) primed with recombinant IFN‐β and IFN‐γ showed different pathways of activation. Treatment of these cells with IFN‐β or IFN‐γ inhibited T. gondii (type II PLK strain) growth. Priming macrophages with IFN‐β had no effect on inflammatory cytokine expression, inducible nitric oxide synthase or indoleamine 2,3‐dioxygenase, nor did it have an effect on their metabolites, nitric oxide and kynurenine respectively. In contrast, IFN‐γ stimulation was characterized by classical macrophage activation and T. gondii elimination. IFN‐β activation recruited the immunity‐related GTPase M1 (IRGM1) to the parasitophorous vacuole in the macrophages and MEFs. Anti‐toxoplasma activities induced by IFN‐β were significantly reduced after IRGM1 knockdown in murine macrophages and in IRGM1‐deficient MEFs. Thus, this study unravels an alternative pathway of macrophage activation by IFN‐β and provides a mechanistic explanation for the contribution of IRGM1 induced by IFN‐β to the elimination of T. gondii.  相似文献   

7.
8.
Pancreatic cancer is a highly aggressive malignancy with limited treatment options. Type‐I interferons (e.g. IFN‐α/‐β) have several anti‐tumour activities. Over the past few years, clinical studies evaluating the effect of adjuvant IFN‐α therapy in pancreatic cancer yielded equivocal results. Although IFN‐α and ‐β act via the type‐I IFN receptor, the role of the number of receptors present on tumour cells is still unknown. Therefore, this study associated, for the first time, in a large panel of pancreatic cancer cell lines the effects of IFN‐α/‐β with the expression of type‐I IFN receptors. The anti‐tumour effects of IFN‐α or IFN‐β on cell proliferation and apoptosis were evaluated in 11 human pancreatic cell lines. Type‐I IFN receptor expression was determined on both the mRNA and protein level. After 7 days of incubation, IFN‐α significantly reduced cell growth in eight cell lines by 5–67%. IFN‐β inhibited cell growth statistically significant in all cell lines by 43–100%. After 3 days of treatment, IFN‐β induced significantly more apoptosis than IFN‐α. The cell lines variably expressed the type‐I IFN receptor. The maximal inhibitory effect of IFN‐α was positively correlated with the IFNAR‐1 mRNA (P < 0.05, r = 0.63), IFNAR‐2c mRNA (P < 0.05, r = 0.69) and protein expression (P < 0.05, r = 0.65). Human pancreatic cancer cell lines variably respond to IFN‐α and ‐β. The expression level of the type‐I IFN receptor is of predictive value for the direct anti‐tumour effects of IFN‐α treatment. More importantly, IFN‐β induces anti‐tumour effects already at much lower concentrations, is less dependent on interferon receptor expression and seems, therefore, more promising than IFN‐α.  相似文献   

9.
Hepatitis B virus (HBV) infection is a worldwide health problem and may develop to liver fibrosis, cirrhosis, and even hepatocellular carcinoma. To investigate the global proteome responses of liver‐derived cells to HBV infection and IFNα treatment, 2‐DE and MS‐based analysis were performed to compare the proteome changes between HBV stably transfected cell line HepG2.2.15 and its parental cell line HepG2, as well as HepG2.2.15 before and after IFNα treatment (5000 IU/mL for 72 h). Compared to HepG2, 12 of 18 down‐regulated and 27 of 32 up‐regulated proteins were identified in HepG2.2.15. After IFNα treatment, 6 of 7 down‐regulated and 11 of 14 up‐regulated proteins were identified. Differentially expressed proteins caused by HBV infection were involved with cytoskeletal matrix, heat shock stress, kinases/signal transduction, protease/proteasome components, etc. Prohibitin showed a dose‐dependent up‐regulation during IFNα treatment and might play a potent role in anti‐HBV activities of IFNα by enhancing the crossbinding p53 expression to achieve the apoptosis of HBV infected liver cells. Down‐regulation of interferon‐stimulated gene 15 (ISG15) in HepG2.2.15 and recovery by IFNα suggested its relationship with IFNα's anti‐HBV effect.  相似文献   

10.
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
It has been shown that the genesis of atherosclerotic lesions is resulted from the injury of vascular endothelial cells and the cell damage is triggered by oxygen radicals generated from various tissues. Human vascular endothelial cells can survive and proliferate depending on growth factors such as VEGF or basic FGF and are induced apoptosis by the deprivation of growth factor or serum. It was found that type 1 IFN inhibits the growth factor deprived cell death of human aortic endothelial cells (HAEC) and protects the cells from chemically induced oxidative cytotoxicity. The anti‐apoptotic effects of type 1 IFN were certified by flow cytometry using annexin‐V‐FITC/PI double staining and cell cycle analysis, fluorescence microscopy using Hoechst33342 and PI, colorimetric assay for caspase‐3 activity, p53 and bax mRNA expressions, and cell counts. It was considered that IFN‐β inhibits the executive late stage apoptosis from the results of annexin‐V‐FITC/PI double staining and the inhibition of caspase‐3 activity, and that the anti‐apoptotic effect might be owing to the direct inhibition of the apoptotic pathway mediated by p53 from the transient down‐regulation of bax mRNA expression. Whereas, type 1 IFN protected the cells from the oxidative cytotoxicity induced by tertiary butylhydroperoxide (TBH) under the presence of Ca2+. The effects of IFN‐β is more potent inhibitor of cell death than IFN‐α. These results indicate that type 1 IFN, especially IFN‐β may be useful for the diseases with vascular endothelium damage such as atherosclerosis or restenosis after angioplasty as a medical treatment or a prophylactic. J. Cell. Biochem. 113: 3823–3834, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
14.
Diallyl disulfide (DADS), the main active component of the cancer fighting allyl sulfides found in garlic, has shown potential as a therapeutic agent in various cancers. Previous studies showed DADS induction of HL‐60 cell differentiation involves down‐regulation of calreticulin (CRT). Here, we investigated the mechanism of DADS‐induced differentiation of human leukaemia cells and the potential involvement of CRT and CCAAT enhancer binding protein‐α (C/EBPα). We explored the expression of CRT and C/EBPα in clinical samples (20 healthy people and 19 acute myeloid leukaemia patients) and found that CRT and C/EBPα expressions were inversely correlated. DADS induction of differentiation of HL‐60 cells resulted in down‐regulated CRT expression and elevated C/EBPα expression. In severe combined immunodeficiency mice injected with HL‐60 cells, DADS inhibited the growth of tumour tissue and decreased CRT levels and increased C/EBPα in vivo. We also found that DADS‐mediated down‐regulation of CRT and up‐regulation of C/EBPα involved enhancement of reactive oxidative species. RNA immunoprecipitation revealed that CRT bound C/EBPα mRNA, indicating its regulation of C/EBPα mRNA degradation by binding the UG‐rich element in the 3′ untranslated region of C/EBPα. In conclusion, the present study demonstrates the C/EBPα expression was correlated with CRT expression in vitro and in vivo and the molecular mechanism of DADS‐induced leukaemic cell differentiation.  相似文献   

15.
In this study, phorbol‐12‐myristate‐13‐acetate (PMA) at low concentrations (<10 nM; L‐PMA) induces the differentiation of CD14+ monocytes into monocyte‐derived macrophages (MDMs) while PMA at high concentrations (>100 nM; H‐PMA) causes the apoptosis of these cells. The pre‐treatment with Go6976 (a PKC‐α/β1 selective inhibitor), not anilinemonoindolylmaleimide [a PKC‐β inhibitor (PKC‐β inh.)], significantly (P < 0.05) reduces the L‐PMA‐induced generation of MDMs in the cultured CD14+ monocytes. On the other hand, either of the above two PKC inhibitors is capable of suppressing the H‐PMA‐induced apoptosis of CD14+ monocytes. However, only the inclusion of PKC‐β inh., not Go6976, prevents the cells from serum deprivation‐induced cell apoptosis. Although the membrane translocation of conventional PKC‐α, β1, and β2 isoforms was observed in the H‐PMA‐treated CD14+ monocytes, only PKC‐β2 exhibits a mitochondrial translocation activity among those PKCs responsive to H‐PMA treatment. Moreover, the activation of DEVD‐dependent caspases (DEVDase) was also detected in the H‐PMA‐treated CD14+ monocytes, indicating the involvement of a caspase‐dependent signaling pathway in the H‐PMA‐induced cell apoptosis of CD14+ monocytes. Together with our previous findings that the selective activation of PKC‐α or PKC‐β1 induces the differentiation of CD14+ monocytes into MDMs or dendritic cells (MoDCs), respectively, the results in this study further demonstrate that PKC‐β2 activation is responsible for relaying the apoptotic signal to intrinsic mitochondria‐dependent caspase signaling cascades in the CD14+ monocytes. It is likely that the selective activation of specific PKC isoforms provides a new strategy to manipulate the differential cell fate commitment of multipotent CD14+ monocytes towards apoptosis or differentiation into MDMs, MoDCs, and other cell types. J. Cell. Physiol. 226: 122–131, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

17.
Many of the sodium‐dependent neurotransmitter transporters are rapidly (within minutes) regulated by protein kinase C (PKC), with changes in activity being correlated with changes in transporter trafficking to or from the plasma membrane. Our recent studies suggest that one of the classical subtypes of PKC, PKCα, may selectively mediate redistribution of the neuronal glutamate transporter, excitatory amino acid carrier (EAAC)1, and show that PKCα can be co‐immunoprecipitated with EAAC1. When the glial glutamate transporter GLT‐1a is transfected into C6 glioma cells, this transporter is internalized in response to activation of PKC, but the PKC subtype involved in this regulation is unknown. In the present study, expression of the phorbol ester‐activated subtypes of PKC was examined in C6 glioma transfected with GLT‐1. Of the classical subtypes, only PKCα was detected, and of the non‐classical subtypes, PKCδ and PKCε were detected. In this system, phorbol ester‐dependent internalization of GLT‐1 was blocked by a general inhibitor of PKCs (bisindolylmaleimide II) and by concentrations of Gö6976 that selectively block classical PKCs, but not by an inhibitor of PKCδ (rottlerin). PKCα immunoreactivity was found in GLT‐1 immunoprecipitates obtained from transfected C6 cells and from crude rat brain synaptosomes, a milieu that better mimics in vivo conditions. The amount of PKCα in both types of immunoprecipitate was modestly increased by phorbol ester, and this increase was blocked by a PKC antagonist. These studies suggest that PKCα may be required for the regulated redistribution of GLT‐1.  相似文献   

18.
In clinic, we examined the expression of protein kinase C (PKC)‐α and Dicer in the samples of bladder cancer patients, and found that the two proteins have a line correlation. Our study confirmed this correlation existing by clearing the decreasing expression of Dicer after the PKC‐α knockdown. Treatment of bladder cancer cell lines (T24, 5637) with the PKC‐α or Dicer knockdown and the PKC inhibitors (Calphostin C and Gö 6976) can promote the apoptosis. Inhibition of PKC can increase the activities of caspase‐3 and PARP, however, decrease the expression of Dicer. And knockdown of the PKC‐α or Dicer can also activate the caspase‐3 or the PARP. Considering the reduction of PKC‐α can induce the Dicer down‐regulation, we make the conclusion that the reduction of PKC‐α can promote the apoptosis via the down‐regulation of Dicer in bladder cancer.  相似文献   

19.
The 90‐kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF‐mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca2+ and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell‐surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ‐induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1–PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号