首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The discovery of undifferentiated, actively proliferating neural stem cells (NSCs) in the mature brain opened a brand new chapter in the contemporary neuroscience. Adult neurogenesis appears to occur in specific brain regions (including hypothalamus) throughout vertebrates’ life, being considered an important player in the processes of memory, learning, and neural plasticity. In the adult mammalian brain, NSCs are located mainly in the subgranular zone (SGZ) of the hippocampal dentate gyrus and in the subventricular zone (SVZ) of the lateral ventricle ependymal wall. Besides these classical regions, hypothalamic neurogenesis occurring mainly along and beneath the third ventricle wall seems to be especially well documented. Neurogenic zones in SGZ, SVZ, and in the hypothalamus share some particular common features like similar cellular cytoarchitecture, vascularization pattern, and extracellular matrix properties. Hypothalamic neurogenic niche is formed mainly by four special types of radial glia-like tanycytes. They are characterized by distinct expression of some neural progenitor and stem cell markers. Moreover, there are numerous suggestions that newborn hypothalamic neurons have a significant ability to integrate into the local neural pathways and to play important physiological roles, especially in the energy balance regulation. Newly formed neurons in the hypothalamus can synthesize and release food intake regulating neuropeptides and they are sensitive to the leptin. On the other hand, high-fat diet positively influences hypothalamic neurogenesis in rodents. The nature of this intriguing new site of adult neurogenesis is still so far poorly studied and requires further investigations.  相似文献   

2.
Generation of new neurons persists in the normal adult mammalian brain, with neural stem/progenitor cells residing in at least two brain regions: the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus (DG). Adult neurogenesis is well documented in the rodent, and has also been demonstrated in vivo in nonhuman primates and humans. Brain injuries such as ischemia affect neurogenesis in adult rodents as both global and focal ischemic insults enhance the proliferation of progenitor cells residing in SGZ or SVZ. We addressed the issue whether an injury triggered activation of endogenous neuronal precursors also takes place in the adult primate brain. We found that the ischemic insult increased the number of progenitor cells in monkey SGZ and SVZ, and caused gliogenesis in the ischemia-prone hippocampal CA1 sector. To better understand the mechanisms regulating precursor cell division and differentiation in the primate, we analyzed the expression at protein level of a panel of potential regulatory molecules, including neurotrophic factors and their receptors. We found that a fraction of mitotic progenitors were positive for the neurotrophin receptor TrkB, while immature neurons expressed the neurotrophin receptor TrkA. Astroglia, ependymal cells and blood vessels in SVZ were positive for distinctive sets of ligands/receptors, which we characterized. Thus, a network of neurotrophic signals operating in an autocrine or paracrine manner may regulate neurogenesis in adult primate SVZ. We also analyzed microglial and astroglial proliferation in postischemic hippocampal CA1 sector. We found that proliferating postischemic microglia in adult monkey CA1 sector express the neurotrophin receptor TrkA, while activated astrocytes were labeled for nerve growth factor (NGF), ligand for TrkA, and the tyrosine kinase TrkB, a receptor for brain derived neurotrophic factor (BDNF). These results implicate NGF and BDNF as regulators of postischemic glial proliferation in adult primate hippocampus.  相似文献   

3.
For the long run: maintaining germinal niches in the adult brain   总被引:43,自引:0,他引:43  
Alvarez-Buylla A  Lim DA 《Neuron》2004,41(5):683-686
The adult mammalian brain retains neural stem cells that continually generate new neurons within two restricted regions: the subventricular zone (SVZ) of the lateral ventricle and the dentate gyrus subgranular zone (SGZ) of the hippocampus. Though these cellular populations are spatially isolated and subserve different brain systems, common themes begin to define adult neurogenic niches: (1) astrocytes serve as both stem cell and niche cell, (2) a basal lamina and concomitant vasculogenesis may be essential components of the niche, and (3) "embryonic" molecular morphogens and signals persist in these niches and play critical roles for adult neurogenesis. The adult neurogenic niches can be viewed as "displaced" neuroepithelium, pockets of cells and local signals that preserve enough embryonic character to maintain neurogenesis for life.  相似文献   

4.
Presumably, the 'hard-wired' neuronal circuitry of the adult brain dissuades addition of new neurons, which could potentially disrupt existing circuits. This is borne out by the fact that, in general, new neurons are not produced in the mature brain. However, recent studies have established that the adult brain does maintain discrete regions of neurogenesis from which new neurons migrate and become incorporated into the functional circuitry of the brain. These neurogenic zones appear to be vestiges of the original developmental program that initiates brain formation. The largest of these germinal regions in the adult brain is the subventricular zone (SVZ), which lines the lateral walls of the lateral ventricles. Neural stem cells produce neuroblasts that migrate from the SVZ along a discrete pathway, the rostral migratory stream, into the olfactory bulb where they form mature neurons involved in the sense of smell. The subgranular layer (SGL) of the hippocampal dentate gyrus is another neurogenic region; new SGL neurons migrate only a short distance and differentiate into hippocampal granule cells. Here, we discuss the surprising finding of neural stem cells in the adult brain and the molecular mechanisms that regulate adult neurogenesis.  相似文献   

5.
Neurogenesis in the adult mammalian brain occurs in two specific brain areas, the subventricular zone (SVZ) bordering the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. Although these regions are prone to produce new neurons, cultured cells from these neurogenic niches tend to be mixed cultures, containing both neurons and glial cells. Several reports highlight the potential of the self-healing capacity of the brain following injury. Even though much knowledge has been produced on the neurogenesis itself, brain repairing strategies are still far away from patients cure. Here we review general concepts in the neurogenesis field, also addressing the methods available to study neural stem cell differentiation. A major problem faced by research groups and companies dedicated to brain regenerative medicine resides on the lack of good methods to functionally identify neural stem cell differentiation and novel drug targets. To address this issue, we developed a unique single cell calcium imaging-based method to functionally discriminate different cell types derived from SVZ neural stem cell cultures. The unique functional profile of each SVZ cell type was correlated at the single cell level with the immunodetection of specific phenotypic markers. This platform was raised on the basis of the functional response of neurons, oligodendrocytes and immature cells to depolarising agents, to thrombin and to histamine, respectively. We also outline key studies in which our new platform was extremely relevant in the context of drug discovery and development in the area of brain regenerative medicine.  相似文献   

6.
7.
8.
Cells in the astroglial lineage are neural stem cells   总被引:1,自引:0,他引:1  
A common assumption of classical neuroscience was that neurons and glial cells were derived from separate pools of progenitor cells and that, once development was completed, no new neurons were produced. The subsequent disproving of the “no new neuron” dogma suggested that ongoing adult neurogenesis was supported by a population of multipotent neural stem cells. Two germinal regions within the adult mammalian brain were shown to contain neural progenitor cells: the subventricular zone (SVZ) along the walls of the lateral ventricles, and the subgranular zone (SGZ) within the dentate gyrus of the hippocampus. Surprisingly, when the primary progenitors (stem cells) of the new neurons in these regions were identified, they exhibited structural and biological markers of astrocytes. The architecture of these germinal regions and the pattern of division of neural stem cells have raised fundamental questions about the mechanism of adult neurogenesis. This review describes studies on the origin of adult neural stem cells, the features distinguishing them from astrocytes in non-germinal regions, and the control mechanisms of the proliferation and differentiation of these cells. Astrocytic adult neural stem cells are part of a developmental lineage extending from the neuroepithelium to radial glia to germinal astrocytes. Adult neural stem cells appear to be strongly influenced by their local microenvironment, while also contributing significantly to the architecture of these germinal zones. However, environment alone does not seem to be sufficient to induce non-germinal astrocytes to behave as neural stem cells. Although emerging evidence suggests that significant heterogeneity exists within populations of germinal zone astrocytes, the way that these differences are encoded remains unclear. The further characterization of these cells should eventually provide a body of knowledge central to the understanding of brain development and disease. Work in the Alvarez-Buylla laboratory is supported by grants from the NIH and the Goldhirsh Foundation and by a gift from John and Frances Bowes. Rebecca Ihrie is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation. Arturo Alvarez-Buylla holds the Heather and Melanie Muss Endowed Chair in Neurosurgery.  相似文献   

9.
Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs). Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. While significant attention has been paid to studying NPCs in the SVZ and SGZ in the adult brain, relatively little attention has been paid to determining whether nestin-expressing neural cells (NECs) exist outside of the SVZ and SGZ. We therefore stained sections immunocytochemically from the adult rat and human brain for NECs, observed four distinct classes of these cells, and present here the first comprehensive report on these cells. Class I cells are among the smallest neural cells in the brain and are widely distributed. Class II cells are located in the walls of the aqueduct and third ventricle. Class IV cells are found throughout the forebrain and typically reside immediately adjacent to a neuron. Class III cells are observed only in the basal forebrain and closely related areas such as the hippocampus and corpus striatum. Class III cells resemble neurons structurally and co-express markers associated exclusively with neurons. Cell proliferation experiments demonstrate that Class III cells are not recently born. Instead, these cells appear to be mature neurons in the adult brain that express nestin. Neurons that express nestin are not supposed to exist in the brain at any stage of development. That these unique neurons are found only in brain regions involved in higher order cognitive function suggests that they may be remodeling their cytoskeleton in supporting the neural plasticity required for these functions.  相似文献   

10.
11.
Tailless (Tlx) is an orphan nuclear receptor which is specifically expressed in the neural stem cells of the two largest germinal neurogenesis zones in the adult mouse brain, the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus. By interacting with its cofactors, Tlx represses its target genes and plays an important role in the maintenance of adult NSCs. This review provides a snapshot of current knowledge about Tlx function in adult NSCs.  相似文献   

12.
13.
Prolactin-stimulated adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) mediates several reproductive behaviors including mating/pregnancy, dominant male pheromone preference in females, and paternal recognition of offspring. However, downstream signaling mechanisms underlying prolactin-induced adult neurogenesis are completely unknown. We report here for the first time that prolactin activates extracellular signal-regulated kinase 5 (ERK5), a MAP kinase that is specifically expressed in the neurogenic regions of the adult mouse brain. Knockdown of ERK5 by retroviral infection of shRNA attenuates prolactin-stimulated neurogenesis in SVZ-derived adult neural stem/progenitor cells (aNPCs). Inducible erk5 deletion in adult neural stem cells of transgenic mice inhibits neurogenesis in the SVZ and OB following prolactin infusion or mating/pregnancy. These results identify ERK5 as a novel and critical signaling mechanism underlying prolactin-induced adult neurogenesis.  相似文献   

14.
For more than a decade, we have known that the human brain harbors progenitor cells capable of becoming mature neurons in the adult human brain. Since the original landmark article by Eriksson et al. in 1998 (Nat Med 4:1313-1317), there have been many studies investigating the effect that depression, epilepsy, Alzheimer's disease, Huntington's disease, and Parkinson's disease have on the germinal zones in the adult human brain. Of particular interest is the demonstration that there are far fewer progenitor cells in the hippocampal subgranular zone (SGZ) compared with the subventricular zone (SVZ) in the human brain. Furthermore, the quantity of progenitor cell proliferation in human neurodegenerative diseases differs from that of animal models of neurodegenerative diseases; there is minimal progenitor proliferation in the SGZ and extensive proliferation in the SVZ in the human. In this review, we will present the data from a range of human and rodent studies from which we can compare the amount of proliferation of cells in the SVZ and SGZ in different neurodegenerative diseases.  相似文献   

15.
Neurogenesis involves generation of functional newborn neurons from neural stem cells (NSCs). Insufficient formation or accelerated degeneration of newborn neurons may contribute to the severity of motor/nonmotor symptoms of Parkinson’s disease (PD). However, the functional role of adult neurogenesis in PD is yet not explored and whether glycogen synthase kinase-3β (GSK-3β) affects multiple steps of adult neurogenesis in PD is still unknown. We investigated the possible underlying molecular mechanism of impaired adult neurogenesis associated with PD. Herein, we show that single intra-medial forebrain bundle (MFB) injection of 6-hydroxydopamine (6-OHDA) efficiently induced long-term activation of GSK-3β and reduced NSC self-renewal, proliferation, neuronal migration, and neuronal differentiation accompanied with increased astrogenesis in subventricular zone (SVZ) and hippocampal dentate gyrus (DG). Indeed, 6-OHDA also delayed maturation of neuroblasts in the DG as witnessed by their reduced dendritic length and arborization. Using a pharmacological approach to inhibit GSK-3β activation by specific inhibitor SB216763, we show that GSK-3β inhibition enhances radial glial cells, NSC proliferation, self-renewal in the SVZ, and the subgranular zone (SGZ) in the rat PD model. Pharmacological inhibition of GSK-3β activity enhances neuroblast population in SVZ and SGZ and promotes migration of neuroblasts towards the rostral migratory stream and lesioned striatum from dorsal SVZ and lateral SVZ, respectively, in PD model. GSK-3β inhibition enhances dendritic arborization and survival of granular neurons and stimulates NSC differentiation towards the neuronal phenotype in DG of PD model. The aforementioned effects of GSK-3β involve a crosstalk between Wnt/β-catenin and Notch signaling pathways that are known to regulate NSC dynamics.  相似文献   

16.
Newborn neurons are generated throughout life in two neurogenic regions, the subventricular zone and the hippocampal dentate gyrus. Stimulation of adult neurogenesis is considered as an attractive endogenous repair mechanism to treat different neurological disorders. Although tremendous progress has been made in our understanding of adult hippocampal neurogenesis, important questions remain unanswered, regarding the identity and the behavior of neural stem cells in the dentate gyrus. We previously showed that conditional Cre-Flex lentiviral vectors can be used to label neural stem cells in the subventricular zone and to track the migration of their progeny with non-invasive bioluminescence imaging. Here, we applied these Cre-Flex lentiviral vectors to study neurogenesis in the dentate gyrus with bioluminescence imaging and histological techniques. Stereotactic injection of the Cre-Flex vectors into the dentate gyrus of transgenic Nestin-Cre mice resulted in specific labeling of the nestin-positive neural stem cells. The labeled cell population could be detected with bioluminescence imaging until 9 months post injection, but no significant increase in the number of labeled cells over time was observed with this imaging technique. Nevertheless, the specific labeling of the nestin-positive neural stem cells, combined with histological analysis at different time points, allowed detailed analysis of their neurogenic potential. This long-term fate mapping revealed that a stable pool of labeled nestin-positive neural stem cells continuously contributes to the generation of newborn neurons in the mouse brain until 9 months post injection. In conclusion, the Cre-Flex technology is a valuable tool to address remaining questions regarding neural stem cell identity and behavior in the dentate gyrus.  相似文献   

17.
The bone morphogenetic proteins (BMPs) are a group of powerful morphogens that are critical for development of the nervous system. The effects of BMP signaling on neural stem cells are myriad and dynamic, changing with each stage of development. During early development inhibition of BMP signaling differentiates neuroectoderm from ectoderm, and BMP signaling helps to specify neural crest. Thus modulation of BMP signaling underlies formation of both the central and peripheral nervous systems. BMPs secreted from dorsal structures then form a gradient which helps pattern the dorsal-ventral axis of the developing spinal cord and brain. During forebrain development BMPs sequentially induce neurogenesis and then astrogliogenesis and participate in neurite outgrowth from immature neurons. BMP signaling also plays a critical role in maintaining adult neural stem cell niches in the subventricular zone (SVZ) and subgranular zone (SGZ). BMPs are able to exert such diverse effects through closely regulated temporospatial expression and interaction with other signaling pathways.  相似文献   

18.
Adult neurogenesis within the subgranular zone (SGZ) of the hippocampal dentate gyrus and the subventricular zone (SVZ) of the lateral ventricle (LV) has been most intensely studied within the brains of rodents such as mice and rats. However, little is known about the cell types and processes involved in adult neurogenesis within primates such as the common marmoset (Callithrix jacchus). Moreover, substantial differences seem to exist between the neurogenic niche of the LV between rodents and humans. Here, we set out to use immunohistochemical and autogradiographic analysis to characterize the anatomy of the neurogenic niches and the expression of cell type-specific markers in those niches in the adult common marmoset brain. Moreover, we demonstrate significant differences in the activity of neurogenesis in the adult marmoset brain compared to the adult mouse brain. Finally, we provide evidence for ongoing proliferation of neuroblasts within both the SGZ and SVZ of the adult brain and further show that the age-dependent decline of neurogenesis in the hippocampus is associated with a decrease in neuroblast cells.  相似文献   

19.
The generation of new neurons within the dentate gyrus of the mature hippocampus is critical for spatial learning, object recognition and memory, whereas new neurons born in the subventricular zone (SVZ) contribute to olfactory function. Adult neurogenesis is a multistep process that begins with the activation and proliferation of a pool of stem/precursor cells. Although the presence of self-renewing and multipotent neural precursors is well established in the SVZ, it is only recently that the existence of such a precursor population has been demonstrated in the hippocampus, the region of the brain involved in learning and memory. Determining how this normally latent pool can be activated therefore offers considerable potential for the development of targeted neurogenic-based therapeutics to ameliorate the cognitive decline associated with hippocampal dysfunction in several neurodegenerative diseases. In this review, we summarize the effects of neural activity, various molecular factors and pharmaceutical agents, as well as voluntary exercise, in activating endogenous neural precursors in the two neurogenic niches of the adult brain, and highlight the role of activation-driven enhancement of neurogenesis for the treatment of psychiatric illness and aging dementia.  相似文献   

20.
Neurons and oligodendrocytes are produced in the adult brain subventricular zone (SVZ) from neural stem cells (B cells), which express GFAP and have morphological properties of astrocytes. We report here on the identification B cells expressing the PDGFRalpha in the adult SVZ. Specifically labeled PDGFRalpha expressing B cells in vivo generate neurons and oligodendrocytes. Conditional ablation of PDGFRalpha in a subpopulation of postnatal stem cells showed that this receptor is required for oligodendrogenesis, but not neurogenesis. Infusion of PDGF alone was sufficient to arrest neuroblast production and induce SVZ B cell proliferation contributing to the generation of large hyperplasias with some features of gliomas. The work demonstrates that PDGFRalpha signaling occurs early in the adult stem cell lineage and may help regulate the balance between oligodendrocyte and neuron production. Excessive PDGF activation in the SVZ in stem cells is sufficient to induce hallmarks associated with early stages of tumor formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号