首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
Thomas Sebeok and Noam Chomsky are the acknowledged founding fathers of two research fields which are known respectively as Biosemiotics and Biolinguistics and which have been developed in parallel during the past 50 years. Both fields claim that language has biological roots and must be studied as a natural phenomenon, thus bringing to an end the old divide between nature and culture. In addition to this common goal, there are many other important similarities between them. Their definitions of language, for example, have much in common, despite the use of different terminologies. They both regard language as a faculty, or a modelling system, that appeared rapidly in the history of life and probably evolved as an exaptation from previous animal systems. Both accept that the fundamental characteristic of language is recursion, the ability to generate an unlimited number of structures from a finite set of elements (the property of ‘discrete infinity’). Both accept that human beings are born with a predisposition to acquire language in a few years and without apparent efforts (the innate component of language). In addition to similarities, however, there are also substantial differences between the two fields, and it is an historical fact that Sebeok and Chomsky made no attempt at resolving them. Biosemiotics and Biolinguistics have become two separate disciplines, and yet in the case of language they are studying the same phenomenon, so it should be possible to bring them together. Here it is shown that this is indeed the case. A convergence of the two fields does require a few basic readjustments in each of them, but leads to a unified framework that keeps the best of both disciplines and is in agreement with the experimental evidence. What is particularly important is that such a framework suggests immediately a new approach to the origin of language. More precisely, it suggests that the brain wiring processes that take place in all phases of human ontogenesis (embryonic, foetal, infant and child development) are based on organic codes, and it is the step-by-step appearance of these brain-wiring codes, in a condition that is referred to as cerebra bifida, that holds the key to the origin of language.  相似文献   

4.
《CMAJ》1924,14(11):1117-1118
  相似文献   

5.
6.
SYNOPSIS. An examination of research on heredity in the yearsbetween Mendel's scientific work and his multiple rediscovery(approximately 1850–1900) suggests that at the turn ofthe century the elucidation of the mechanism of the transmissionof hereditary traits from parent to offspring was inevitable.By 1900, a variety of different investigators were either attackingthe problem of genetic transmission directly and successfully,or were examining specific aspects of the issue. However, itappears that the identity of analysis used by Mendel and byhis rediscoverers was primarily the result of the latter allfollowing Mendel's formulation. Had Mendel not been rediscovered,the "Laws of Heredity" would likely have been formulated quitedifferently, and been discovered and refined over a period oftime rather than all being discovered and given their finalform at the very outset.  相似文献   

7.
In the leopard frog (Rana pipiens), thymic lymphocytes do notoriginate from blood-borne stem cells that migrate into thethymus anlage; rather they arise in situ from elements in thethymic rudiment itself. After thymic differentiation, the lymphocytes(or their descendants) leave the thymus and extensively seedthe peripheral lymphoid organs. Indeed, virtually all the lymphocytesin the spleen, kidney, and bone marrow are ontogenically derivedfrom thymic cells. In postmetamorphic life, the thymus representsan organ in which lymphopoiesis is genuinely self-sustaining.Throughout the juvenile life of the frog, there is no indicationof an inward afferent stream of cells entering the intact thymus.  相似文献   

8.
9.
The heterotrophic theory of the origin of life is the only proposal available with experimental support. This comes from the ease of prebiotic synthesis under strongly reducing conditions. The prebiotic synthesis of organic compounds by reduction of CO2 to monomers used by the first organisms would also be considered an heterotrophic origin. Autotrophy means that the first organisms biosynthesized their cell constituents as well as assembling them. Prebiotic synthetic pathways are all different from the biosynthetic pathways of the last common ancestor (LCA). The steps leading to the origin of the metabolic pathways are closer to prebiotic chemistry than to those in the LCA. There may have been different biosynthetic routes between the prebiotic and the LCAs that played an early role in metabolism but have disappeared from extant organisms. The semienzymatic theory of the origin of metabolism proposed here is similar to the Horowitz hypothesis but includes the use of compounds leaking from preexisting pathways as well as prebiotic compounds from the environment.  相似文献   

10.
Kinesin is a dimeric motor with twin catalytic heads joined to a common stalk. Kinesin molecules move processively along microtubules in a hand-over-hand walk, with the two heads advancing alternately. Recombinant kinesin constructs with short stalks have been found to “limp”, i.e., exhibit alternation in the dwell times of successive steps. Limping behavior implies that the molecular rearrangements underlying even- and odd-numbered steps must differ, but the mechanism by which such rearrangements lead to limping remains unsolved. Here, we used an optical force clamp to measure individual, recombinant dimers and test candidate explanations for limping. Introducing a covalent cross-link into the stalk region near the heads had no effect on limping, ruling out possible stalk misregistration during coiled-coil formation as a cause. Limping was equally unaffected by mutations that produced 50-fold changes in stalk stiffness, ruling out models where limping arises from an asymmetry in torsional strain. However, limping was enhanced by perturbations that increased the vertical component of load on the motor, including increases in bead size or net load, and decreases in the stalk length. These results suggest that kinesin heads take different vertical trajectories during alternate steps, and that the rates for these motions are differentially sensitive to load.  相似文献   

11.
On the Origin of Macromolecular Sequences   总被引:1,自引:0,他引:1       下载免费PDF全文
The origin of the degree and type of order found in biological macromolecules is not adequately explained solely as an accumulation of genetic restrictions acquired through natural selection from otherwise unrestricted primeval sequences capable of self-replication, since the biological process of replication is itself dependent on the pre-existence of such order, and since the number of sequences that could have ever been tested by selection on the earth is an insignificant fraction of the number of unrestricted sequences which would be possible. Therefore the hypothesis is considered that replication and selection began from well ordered sequences, rather than random sequences. It is shown how the Turing concept of computation in fed-back, discrete-state automata can lead to the generation of order withour pre-existing instructions, and how this computation can result in self-repeating, random-like, but well ordered sequences of great length. Macromolecular models of such computers are suggested on the basis of mechanisms proposed for the growth of eutactic polymers. Such self-replicating, mutable sequences may then evolve genetic control which is sufficient to accommodate the information accumulated by natural selection. The structure and function of enzymes and structural proteins is related to this model, and statistical evidence from known amino acid sequences is shown to be consistent with some degree of non-genetic ordering.  相似文献   

12.
13.
14.

Background

Two bovine species contribute to the Indonesian livestock, zebu (Bos indicus) and banteng (Bos javanicus), respectively. Although male hybrid offspring of these species is not fertile, Indonesian cattle breeds are supposed to be of mixed species origin. However, this has not been documented and is so far only supported by preliminary molecular analysis.

Methods and Findings

Analysis of mitochondrial, Y-chromosomal and microsatellite DNA showed a banteng introgression of 10–16% in Indonesian zebu breeds. East-Javanese Madura and Galekan cattle have higher levels of autosomal banteng introgression (20–30%) and combine a zebu paternal lineage with a predominant (Madura) or even complete (Galekan) maternal banteng origin. Two Madura bulls carried taurine Y-chromosomal haplotypes, presumably of French Limousin origin. In contrast, we did not find evidence for zebu introgression in five populations of the Bali cattle, a domestic form of the banteng.

Conclusions

Because of their unique species composition Indonesian cattle represent a valuable genetic resource, which potentially may also be exploited in other tropical regions.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号