首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 652 毫秒
1.
Island and mainland populations of animal species often differ strikingly in life-history traits such as clutch size, egg size, total reproductive effort and body size. However, despite widespread recognition of insular shifts in these life-history traits in birds, mammals and reptiles, there have been no reports of such life-history shifts in amphibians. Furthermore, most studies have focused on one specific life-history trait without explicit consideration of coordinated evolution among these intimately linked life-history traits, and thus the relationships among these traits are poorly studied. Here we provide the first evidence of insular shifts and trade-offs in a coordinated suite of life-history traits for an amphibian species, the pond frog Rana nigromaculata . Life-history data were collected from eight islands in the Zhoushan Archipelago and neighboring mainland China. We found consistent, significant shifts in all life-history traits between mainland and island populations. Island populations had smaller clutch sizes, larger egg sizes, larger female body size and invested less in total reproductive effort than mainland populations. Significant negative relationships were found between egg size and clutch size and between egg size and total reproductive effort among frog populations after controlling for the effects of body size. Therefore, decreased reproductive effort and clutch size, larger egg size and body size in pond frogs on islands were selected through trade-offs as an overall life-history strategy. Our findings contribute to the formation of a broad, repeatable ecological generality for insular shifts in life-history traits across a range of terrestrial vertebrate taxa.  相似文献   

2.
Capsule Daylength, rather than latitude, was found to be an important determinant of variation in clutch size.

Aims To describe the nature of spatial and temporal variation in clutch size, and explore the ecological correlates of these patterns.

Methods We tested the prediction that seasonal declines in clutch size will be greater at higher latitudes. The environmental variables focused on were the influence of daylength, plant productivity, seasonality (i.e. Ashmole's hypothesis) and physiological mechanisms that relate clutch size to ambient temperature. We used data from 1980 to 2003 on spatial variation in clutch size across Britain for single‐brooded species, in which clutch size can be taken as a measure of annual reproductive investment. We included all seven species, from five families, with sufficient data in the British Trust for Ornithology's Nest Record Scheme.

Results There are strong seasonal declines in clutch size but little evidence for latitudinal gradients in clutch size or in latitudinal gradients in the rate of seasonal clutch size decline. Of the environmental variables investigated, daylength had the most marked effect on clutch size; this was positive in diurnal species and negative in the one nocturnal species.

Conclusions Although this study was confined to a relatively small latitudinal range of 8°, we found marked latitudinal gradients in a number of factors thought to drive spatial patterns in clutch size. Moreover, such variation is of sufficient magnitude to generate spatial patterns in other ecological variables in Britain. There is thus no simple explanation for the lack of a latitudinal gradient in clutch size. The results concerning daylength indicate that the time available for foraging is an important determinant of variation in clutch size.  相似文献   

3.
Two species of field mice, Apodemus argenteus and A. speciosus, occur in sympatry across the Japanese archipelago. The inter- and intraspecific patterns of morphological differentiation have been evaluated, using a Fourier analysis of the mandible outline. The relative importance of the effect of insular isolation and latitudinal climatic gradient on the size and shape of the two species was assessed by a comparison of the populations from the large island of Honshu and the surrounding small-island populations. The size variation in A. argenteus is correlated with the climatic gradient whilst the shape variation corresponds mainly to a random differentiation of the small-island populations from a Honshu-like basic morphological pattern. A. speciosus displays increased size on small islands, and its shape variation is related to both the climatic gradient and insularity. Finally, the two species are differentiated by both the size and shape of the mandible across the Japanese archipelago, suggesting that interspecific competition between both species is reduced via niche partitioning. Our results emphasize the importance of insular isolation on shape differentiation, but a part of the morphological differentiation is also related to the latitudinal climatic gradient. Isolation on small islands could have favoured such a response to environmental factors by lowering the gene flow that prevents almost any significant differentiation within Honshu populations.  相似文献   

4.
In a study of almost 16 000 nest records from seven swallow species across the entire Western Hemisphere, clutch sizes decline with relative laying date in each population, but the slope of this decline grows steeper with increasing distance from the equator. Late‐laying birds at all latitudes lay clutches of similar sizes, suggesting that latitudinal differences may be driven primarily by earlier‐laying birds. Focused comparisons of site‐years in North America with qualitatively different food availability indicate that food supply significantly affects mean clutch size but not the clutch size–lay date regression. Other studies on the seasonality of swallow food also indicate that steeper clutch size–lay date declines in the North are not caused by steeper earlier food peaks there. The distribution of lay dates grows increasingly right‐skewed with increasing latitude. This variation in lay‐date distributions could be due to the predominance of higher quality, early‐laying (and large‐clutched) individuals among populations at higher latitudes, resulting from latitudinal variation in mortality rates and the intensity of sexual selection. Our results underscore the importance of studying clutch size and lay date in tandem and suggest new research into the causes of their joint geographic variation.  相似文献   

5.
Parallel latitudinal clines to the long-standing ones in the original Palearctic populations have independently evolved at different rates for chromosomal polymorphism and body size in South and North American populations of Drosophila subobscura since colonization around 25 years ago. This strongly suggests that (micro) evolutionary changes are largely predictable, but the underlying mechanisms are unknown. The putative role of temperature per se was investigated by using three sets of populations at each of three temperatures (13 degrees , 18 degrees , and 22 degrees C) spanning much of the tolerable range for this species. We found a lower chromosomal diversity at the warmest temperature; a quick and consistent shift in gene arrangement frequencies in response to temperature; an evolutionary decrease in wing size, mediated by both cell area and cell number, at 18 degrees C; no relationship between wing size and those inversions involved in latitudinal clines; and a shortening of the basal length of longitudinal vein IV relative to its total length with increasing standard dose. The trends for chromosomal polymorphism and body size were generally inconsistent from simple climatic-based explanations of worldwide latitudinal patterns. The findings are discussed in the light of available information on D. subobscura and results from earlier thermal selection experiments with various Drosophila species.  相似文献   

6.
In dipterans, the wing-beat frequency, and, hence, the lift generated, increases linearly with ambient temperature. If flight performance is an important target of natural selection, higher wing:thorax size ratio and wing-aspect ratio should be favored at low temperatures because they increase the lift for a given body weight. We investigated this hypothesis by examining wing: thorax size ratio and wing-aspect ratio in Drosophila melanogaster collected from wild populations along a latitudinal gradient and in their descendants reared under standard laboratory conditions. In a subset of lines, we also studied the phenotypic plasticity of these traits in response to temperature. To examine whether the latitudinal trends in wing:thorax size ratio and wing-aspect ratio could have resulted from a correlated response to latitudinal selection on wing area, we investigated the correlated responses of these characters in lines artificially selected for wing area. In both the geographic and the artificially selected lines, wing:thorax size ratio and wing-aspect ratio decreased in response to increasing temperature during development. Phenotypic plasticity for either trait did not vary among latitudinal lines or selective regimes. Wing:thorax size ratio and wing-aspect ratio increased significantly with latitude in field-collected flies. The cline in wing:thorax size ratio had a genetic component, but the cline in wing-aspect ratio did not. Artificial selection for increased wing area led to a statistically insignificant correlated increase in wing:thorax size ratio and a decrease in wing-aspect ratio. Our observations are consistent with the hypotheses that high wing-thorax size ratio and wing aspect ratio are per se selectively advantageous at low temperatures.  相似文献   

7.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1997,146(3):881-890
Field-collected Drosophila melanogaster from 19 populations in Eastern Australia were measured for body size traits, and the measurements were compared with similar ones on flies from the same populations reared under standard laboratory conditions. Wild caught flies were smaller, and latitudinal trends in size were greater. Reduced size was caused by fewer cells in the wing, and the steeper cline by greater variation in cell area. The reduction in size in field-collected flies may therefore have been caused by reduced nutrition, and the steeper cline may have been caused by an environmental response to latitudinal variation in temperature. No evidence was found for evolution of size traits in response to laboratory culture. The magnitude of phenotypic plasticity in response to temperature of development time, body size, cell size and cell number was examined for six of the populations, to test for latitudinal variation in plasticity. All characters were plastic in response to temperature. Total development time showed no significant latitudinal variation in plasticity, although larval development time showed a marginally significant effect, with most latitudinal variation at intermediate rearing temperatures. Neither thorax length nor wing size and its cellular components showed significant latitudinal variation in plasticity.  相似文献   

8.
Many characteristics of organisms in free-living populations appear to be under directional selection, possess additive genetic variance, and yet show no evolutionary response to selection. Avian breeding time and clutch size are often-cited examples of such characters. We report analyses of inheritance of, and selection on, these traits in a long-term study of a wild population of the collared flycatcher Ficedula albicollis. We used mixed model analysis with REML estimation ("animal models") to make full use of the information in complex multigenerational pedigrees. Heritability of laying date, but not clutch size, was lower than that estimated previously using parent-offspring regressions, although for both traits there was evidence of substantial additive genetic variance (h2 = 0.19 and 0.29, respectively). Laying date and clutch size were negatively genetically correlated (rA = -0.41 +/- 0.09), implying that selection on one of the traits would cause a correlated response in the other, but there was little evidence to suggest that evolution of either trait would be constrained by correlations with other phenotypic characters. Analysis of selection on these traits in females revealed consistent strong directional fecundity selection for earlier breeding at the level of the phenotype (beta = -0.28 +/- 0.03), but little evidence for stabilising selection on breeding time. We found no evidence that clutch size was independently under selection. Analysis of fecundity selection on breeding values for laying date, estimated from an animal model, indicated that selection acts directly on additive genetic variance underlying breeding time (beta = -0.20 +/- 0.04), but not on clutch size (beta = 0.03 +/- 0.05). In contrast, selection on laying date via adult female survival fluctuated in sign between years, and was opposite in sign for selection on phenotypes (negative) and breeding values (positive). Our data thus suggest that any evolutionary response to selection on laying date is partially constrained by underlying life-history trade-offs, and illustrate the difficulties in using purely phenotypic measures and incomplete fitness estimates to assess evolution of life-history trade-offs. We discuss some of the difficulties associated with understanding the evolution of laying date and clutch size in natural populations.  相似文献   

9.
Range expansion during biological invasion requires that invaders adapt to geographical variation in climate, which should yield latitudinal clines in reproductive phenology. We investigated geographic variation in life history among 25 introduced populations of Lythrum salicaria, a widespread European invader of North American wetlands. We detected a strong latitudinal cline in initiation of flowering and size at flowering, which paralleled that reported among native populations. Plants from higher latitudes flowered earlier and at a smaller size than those from lower latitudes, even when raised in a uniform glasshouse. Early flowering was associated with greatly reduced reproductive output, but this was not associated with latitudinal variation in abundance, and probably did not result from a genetic correlation between time to and size at flowering. As introduction to North America c. 200 years ago, L. salicaria has re-established latitudinal clines in life history, probably as an evolutionary response to climatic selection.  相似文献   

10.
JUAN JOSÉ SANZ 《Ibis》1999,141(1):100-108
Geographical trends in breeding parameters were studied in the Pied Flycatcher Ficedula hypoleuca in the western Palaearctic. Predictions arising from the hypothesis that daylength and/or energy requirements of the brood explain latitudinal clutch size variation were tested. The nestling period decreased with latitude, but nestling mass on day 13 after hatching did not show a trend with latitude. The length of the daily activity period (working day) at the time of peak brood demand showed a quadratic relationship with latitude and did not increase linearly with daylight hours. The present study supports the hypothesis that latitudinal clutch size variation is influenced by the duration of the working day and the energy requirements of the brood. The balance between the energy requirements of the brood and the parents, in relation to the duration of working day and ambient temperature, are proposed to explain the latitudinal variation in clutch size in the Pied Flycatcher.  相似文献   

11.
We investigated one causal explanation for geographic variation in clutch size and aggregative feeding of the pipevine swallowtail, Battus philenor. Populations in California lay larger clutches than those in Texas, and larger feeding aggregations grow at an accelerated rate on the California host plant. Using reciprocal transplant experiments with larvae from California and Texas populations, we found that the benefit of increased growth rate associated with feeding in larger groups occurred only on the California host plant and was observed for larvae from both populations. These results are consistent with the hypothesis that larger clutch size and aggregative feeding are adaptations to characteristics of the California host plant. Future studies on the evolution of clutch size and aggregative feeding of herbivorous insects should consider how these life-history traits affect host plant suitability.  相似文献   

12.
Adaptive studies of avian clutch size variation across environmental gradients have resulted in what has become known as the fecundity gradient paradox, the observation that clutch size typically decreases with increasing breeding season length along latitudinal gradients, but increases with increasing breeding season length along elevational gradients. These puzzling findings challenge the common belief that organisms should reduce their clutch size in favor of additional nesting attempts as the length of the breeding season increases, an approach typically described as a bet‐hedging strategy. Here, we propose an alternative hypothesis—the multitasking hypothesis—and show that laying smaller clutches represents a multitasking strategy of switching between breeding and recovery from breeding. Both our individual‐based and analytical models demonstrate that a small clutch size strategy is favored during shorter breeding seasons because less time and energy are wasted under the severe time constraints associated with breeding multiply within a season. Our model also shows that a within‐generation bet‐hedging strategy is not favored by natural selection, even under a high risk of predation and in long breeding seasons. Thus, saving time—wasting less time as a result of an inability to complete a breeding cycle at the end of breeding season—is likely to be the primary benefit favoring the evolution of small avian clutch sizes during short breeding seasons. We also synthesize the seasonality hypothesis (pronounced seasonality leads to larger clutch size) and clutch size‐dependent predation hypothesis (larger clutch size causes higher predation risks) within our multitasking hypothesis to develop an integrative model to help resolve the paradox of contrasting patterns of clutch size along elevational and latitudinal gradients. Ultimately, our models provide a new perspective for understanding life‐history evolution under fluctuating environments.  相似文献   

13.
Aim The distinct nature of island populations has traditionally been attributed either to adaptation to particular insular conditions or to random genetic effects. In order to assess the relative importance of these two disparate processes, insular effects were addressed in the European wood mouse, Apodemus sylvaticus (Linnaeus, 1758). Location Wood mice from 33 localities on both mainland and various Atlantic and western Mediterranean islands were considered. This sampling covers only part of the latitudinal range of A. sylvaticus but included the two main genetic clades identified by previous studies. Islands encompass a range of geographical conditions (e.g. small islands fringing the continent through large and isolated ones). Methods The insular syndrome primarily invokes variations in body size, but ecological factors such as release from competition, niche widening and food availability should also influence other characters related to diet. In the present study, the morphology of the wood mice was quantified based on two characters involved in feeding: the size and shape of the mandibles and first upper molars. The size of the mandible is also a proxy for the body size of the animal. Patterns of morphological differentiation of both features were estimated using two‐dimensional outline analysis based on Fourier methods. Results Significant differences between mainland and island populations were observed in most cases for both the mandibles and molars. However, molars and mandibles displayed divergent patterns. Mandible shape diverged mostly on islands of intermediate remoteness and competition levels, whereas molars exhibited the greatest shape differentiation on small islands, such as Port‐Cros and Porquerolles. A mosaic pattern was also displayed for size. Body and mandible size increased on Ibiza, but molar size remained similar to mainland populations. Mosaic patterns were, however, not apparent in the mainland populations. Congruent latitudinal variations were evident for the size and shape of both mandibles and molars. Main conclusions Mosaic evolution appears to characterize insular divergence. The molar seems to be more prone to change with reduced population size on small islands, whereas the mandible could be more sensitive to peculiar environmental conditions on large and remote islands.  相似文献   

14.
Population-level comparative analyses can link microevolutionary processes within populations to macroevolutionary patterns of diversification. We used the comparative method to study the evolution of sexual size dimorphism (SSD) among populations of side-blotched lizards ( Uta stansburiana ) . Uta stansburiana is polymorphic for different male mating and female life-history strategies in some populations, but monomorphic in others. We tested whether intrasexual selection among males, fecundity selection on females, and the presence of polymorphic strategies affected levels of SSD. We first resolved a phylogeny for 41 populations across the range of the species and documented a substantial regional structure. Our intraspecific data had significant phylogenetic signal, and correcting for phylogeny using independent contrasts had large effects on our results. Polymorphic populations had male-biased SSD and changes in male body size, levels of tail breaks, and SSD consistent with the intrasexual selection hypothesis. Monomorphic populations had changes in female size, clutch size, and SSD consistent with the fecundity selection hypothesis. Fecundity selection is a likely cause of some monomorphic populations having no SSD or female-biased SSD. Our results suggest that changes in mating strategies are associated with phenotypic diversification and multiple evolutionary forces can shape SSD.  相似文献   

15.
Intraspecific latitudinal clines in the body size of terrestrial vertebrates, where members of the same species are larger at higher latitudes, are widely interpreted as evidence for natural selection and adaptation to local climate. These clines are predicted to shift in response to climate change. We used museum specimens to measure changes in the body size of eight passerine bird species from south-eastern Australia over approximately the last 100 years. Four species showed significant decreases in body size (1.8–3.6% of wing length) and a shift in latitudinal cline over that period, and a meta-analysis demonstrated a consistent trend across all eight species. Southern high-latitude populations now display the body sizes typical of more northern populations pre-1950, equivalent to a 7° shift in latitude. Using ptilochronology, we found no evidence that these morphological changes were a plastic response to changes in nutrition, a likely non-genetic mechanism for the pattern observed. Our results demonstrate a generalized response by eight avian species to some major environmental change over the last 100 years or so, probably global warming.  相似文献   

16.
I used comparative and experimental analysis of egg size in a Sceloporus lizard to examine a fundamental tenet of life-history theory: the presumed trade-offs among offspring number, offspring size, and performance traits related to offspring size that are likely to influence fitness. I analyzed latitudinal and elevational patterns of egg life-history characteristics among populations and experimentally manipulated egg size and hatchling size by removing yolk from the eggs to examine the causal bases of population differences in offspring traits. Mean clutch size among populations increased to the north (seven vs. 12 eggs/clutch, California vs. Washington), whereas egg size decreased (0.65 g vs. 0.40 g). The elevational patterns in southern California paralleled the latitudinal trends. Several offspring life-history traits that are correlated with egg size also varied geographically; these traits included incubation time, hatchling size, growth rate, and hatchling sprint performance. Hatchling viability of experimentally reduced eggs was remarkably high (~70%), even when up to 50% of the yolk was removed. The experimentally reduced eggs and hatchlings demonstrated the degree to which size influences each of the offspring life-history traits considered. Northern eggs hatched sooner, in part because of their small size. Though growth rate is allometrically related to size within each population (i.e., smaller hatchlings grow faster on a mass-specific basis), population differences in growth rate, as measured in the laboratory, are likely to reflect genetic differentiation in the underlying physiology of growth. Moreover, smaller juveniles, because of experimental reduction, had slower sprint speeds than larger juveniles. The slower sprint speed of hatchlings from Washington compared to hatchlings from California is thus largely due to the fact that eggs are smaller in the Washington population. These results provide a basis for interpreting the evolutionary divergence of the suite of traits involved in the evolution of maternal investment per offspring in lizards. For example, evolutionary divergence in some offspring traits functionally related to size (e.g., sprint speed) may be constrained, relative to traits that are determined by other aspects of development or physiology (e.g., growth). I also discuss issues relating to the evolution of maternal investment that could be tested in laboratory and natural populations using experimentally reduced offspring.  相似文献   

17.
Drosophila subobscura is geographically widespread in the Old World. Around the late 1970s, it was accidentally introduced into both South and North America, where it spread rapidly over broad latitudinal ranges. This invading species offers opportunities to study the speed and predictability of trait evolution on a geographic scale. One trait of special interest is body size, which shows a strong and positive latitudinal cline in many Drosophila species, including Old World D. subobscura. Surveys made about a decade after the invasion found no evidence of a size cline in either North or South America. However, a survey made in North America about two decades after the invasion showed that a conspicuous size cline had evolved and (for females) was coincident with that for Old World flies. We have now conducted parallel studies on 10 populations (13 degrees of latitude) of flies, collected in Chile in spring 1999. After rearing flies in the laboratory for several generations, we measured wing sizes and compared geographic patterns (versus latitude or temperature) for flies on all three continents. South American females have now evolved a significant latitudinal size cline that is similar in slope to that of Old World and of North American flies. Rates of evolution (haldanes) for females are among the highest ever measured for quantitative traits. In contrast, the size cline is positive but not significant for South or North American males. At any given latitude, South American flies of both sexes are relatively large; this in part reflects the relatively cool climate of coastal Chile. Interestingly, the sections of the wing that generate the size cline for females differ among all three continents. Thus, although the evolution of overall wing size is predictable on a geographic scale (at least for females), the evolution of size of particular wing components is decidedly not.  相似文献   

18.
In anuran amphibians, age- and size-related life-history traits vary along latitudinal and altiudinal gradients. In the present study, we tested the hypothesis that altitudinal and latitudinal effects cause similar responses by assessing demographic life-history traits in nine Bufo calamita populations inhabiting elevations from sea level to 2270 m. Skeletochronologically determined age at maturity and longevity increased at elevations exceeding 2000 m, but female potential reproductive lifespan (PRLS) did not increase with altitude, as it did with latitude. Integrating the available evidence, it was found that lifetime fecundity of natterjacks decreased at the upper altitudinal range because PRLS was about the same as in lowland populations but females were smaller. In contrast, small size of northern females was compensated for by increased PRLS which minimised latitudinal variation of lifetime fecundity. Thus, this study provides evidence that altitudinal effects on life-history traits do not mimic latitudinal effects. Life-history trait variation along the altitudinal gradient seems to respond directly to the shortening of the annual activity period. As there is no evidence for increasing mortality in highland populations, reduced lifetime fecundity may be the ultimate reason for the natterjacks' inability to colonise elevations exceeding 2500 m.  相似文献   

19.
Different populations of a species tend to vary in survival and reproduction, but the extent and scale of such spatial variation are poorly known. We estimated survival and clutch size of kelp gulls Larus dominicanus vetula across their entire African range. At this large geographic scale, we found no evidence for spatial variation in survival, and there was no variation in clutch size. However, there was considerable variation in clutch size among colonies within regions. Over the whole study, mean annual survival of juvenile and adult birds was 0.44 and 0.84, and mean clutch size was 2.2 eggs. A matrix population model showed that population growth was least sensitive to variation in clutch size, and the observed variation in clutch size could not fully account for the observed variation in population growth among colonies and regions. Our results thus suggest that dispersal and/or variation in survival (including egg/nestling survival) at a small spatial scale are also important for the spatial pattern of kelp gull population dynamics. These results are consistent with a metapopulation approach to spatial population dynamics.  相似文献   

20.
Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land‐bridge archipelagoes offer ideal model systems for identifying the long‐term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square‐root‐transformed) and population size (log‐transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号