首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
杜斌  孙建和 《微生物学报》2015,55(2):126-133
环二腺苷酸(cyclic diadenosine monophosphate,c-di-AMP)是在细菌中新发现的一种第二信使分子,其参与调节多种生理功能,包括细菌的生长、细胞壁的代谢平衡以及细菌的致病力等。c-di-AMP除了在细菌中发挥作用外,它还可作为第二信使分子被真核宿主识别,激活先天性免疫应答。细菌细胞内c-di-AMP的代谢受二腺苷酸环化酶(diadenylate cyclase,DAC)和磷酸二酯酶(phosphodiesterase,PDE)的调控。本文综述了c-di-AMP的代谢途径、调控机制、受体蛋白、生物学功能以及未来的研究方向和应用前景。  相似文献   

2.
环二腺苷酸(Cyclic diadenosine monophosphate,c-di-AMP)是细菌中广泛存在的第二信号分子。c-di-AMP在细菌中的代谢受二腺苷酸环化酶(Diadenylatecyclase, DAC)和磷酸二酯酶(Phosphodiesterase,PDE)的精密调控。c-di-AMP不仅调节细菌生长、细胞壁稳态、离子转运等多种生理过程,而且能够被真核宿主胞内多种感应子/受体蛋白识别,从而调控抗感染免疫。细菌c-di-AMP参与调控宿主I型干扰素应答、NF-κB信号通路活性、自噬以及炎症小体应答等固有免疫应答。此外,c-di-AMP作为黏膜佐剂可诱导宿主适应性免疫。c-di-AMP被认为是一种新发现的病原体相关的分子模式(Pathogen associated molecular pattern,PAMP),已成为细菌疫苗和药物研究中的新靶点。  相似文献   

3.
生物被膜是微生物附着在生物或非生物表面所形成的一种三维结构,细胞被其自身所产生的胞外聚合物所包围,生物被膜的形成被认为是微生物应对生物和非生物胁迫时所产生的一种自我防御机制。众多微生物能够在植物叶、维管束和根等组织中生长,并在植物不同组织表面附着形成生物被膜,病原细菌的生物被膜随植物内部环境动态变化是其有效发挥致病作用的关键,研究植物病原细菌生物被膜调控机制是认识植物-病原菌互作的重要方面。文中将系统地介绍植物病原细菌生物被膜特征、组成成分、分子调控机制及最新研究进展。  相似文献   

4.
环二腺苷酸(cyclic diadenylate monophosphate, c-di-AMP)是一种广泛存在于细菌中的重要核苷酸第二信使分子,在病原体细菌,尤其是许多革兰阴性细菌中发挥着重要作用。研究表明,c-di-AMP在细菌生长、耐药性、抗应激、侵袭力和生物膜形成等方面担当不可取代的角色,同时参与激活和调节宿主的免疫反应。有关c-di-AMP的研究逐渐深入并成为微生物研究领域的热点,微生物主要通过改变其胞内外c-di-AMP的含量来调节细菌生理功能及宿主细胞免疫反应,因此对于胞内外c-di-AMP的定量研究也得到了研究者的重视。目前针对c-di-AMP的定量检测已有多种技术方法被报道,包括经常使用的HPLC/MS检测、ELISA检测,以及利用甲氧檗因的荧光检测、荧光生物传感器的c-di-AMP活细胞成像等。每种方法的检测原理、适用范围及优缺点各不相同。对现有检测方法的总结有助于对新检测手段的探索,进一步提升对c-di-AMP功能的认知。为了广泛研究c-di-AMP介导的信号通路及其生物学作用,就目前细菌c-di-AMP的检测方法的研究进展作一综述。  相似文献   

5.
环二腺苷酸(cyclic diadenylate monophosphate,c-di-AMP)是新发现的在细菌中广泛存在的一类重要的第二信使。c-di-AMP不仅与细菌的生长、细胞壁的代谢平衡、生物被膜的形成等密切相关,还在真核宿主细胞抗感染的固有免疫中发挥重要作用。主要从c-di-AMP的合成酶与降解酶、c-di-AMP在病原菌中的结合蛋白以及c-di-AMP与宿主细胞互作过程中的相关受体蛋白等几方面进行综述。  相似文献   

6.
乔瑞红  谢鲲鹏  谢明杰 《微生物学报》2015,55(10):1238-1244
摘要:细菌的耐药性问题是目前医学临床面临的严峻问题,其中细菌生物被膜的形成是引起细菌持续性感染的主要致病机制之一。细菌生物被膜的形成过程十分复杂,受多种因子和多基因的共同调控,且不同的因子和基因在生物被膜形成的不同阶段所起的作用不同。本文重点对引起院内感染的主要致病菌葡萄球菌的生物被膜形成的基因调控机制,以及药物抑制葡萄球菌生物被膜的研究现状进行综述,旨在为解决医学临床中存在的细菌感染,研制抗生物被膜药物和疫苗等提供参考。  相似文献   

7.
蔡霞  何进 《微生物学报》2017,57(10):1434-1442
钾离子(K~+)是维持生命体存活的必需元素。原核生物进化出一系列K~+转运系统,如Kdp系统﹑Ktr系统和Trk系统等,来维持胞内相对恒定的K~+浓度。环二腺苷酸单磷酸(cyclic diadenosine monophosphate,c-di-AMP)是新发现的第二信使分子,可以与K~+转运系统中的KdpD、KtrA和TrkA结合。当胞内c-di-AMP浓度高时,c-di-AMP会与K~+转运蛋白结合,降低其转运活性。c-di-AMP的靶标除蛋白质外,还有RNA元件,即c-di-AMP的核糖开关。高浓度的c-di-AMP与其核糖开关结合后,可抑制下游K~+转运蛋白编码基因,如kdp、ktr和trk操纵子以及kup基因的转录,从而调控K~+的转运。总之,胞内高浓度的c-di-AMP抑制细菌对K~+的吸收。c-di-AMP调控K~+转运机制的研究,不仅丰富了K~+转运的调控方式,而且也扩大了c-di-AMP的调控范围,为细菌的利用与防治提供了新思路。  相似文献   

8.
细菌生物被膜(Bacterial biofilm,BF)是黏附于机体黏膜或生物材料表面、由细菌及其分泌的多聚糖、蛋白质和核酸等组成的被膜状生物群体,是造成持续性感染的重要原因之一。细菌在生长繁殖时会产生一些次级代谢产物,部分会作为生物信号分子在细胞内或细胞间传递信息,使细菌在多细胞水平协调统一相互配合,以完成一些重要的生理学功能,如生物发光、BF的形成、运动与固定态生活方式的转换等。信号分子在BF形成过程中起着重要的调控作用。文中从密度感应系统(Quorum-sensing systems,QS)、环二鸟苷酸(Cyclic diguanylate,c-di-GMP)、双组分系统(Two-component systems,TCS)和sRNA等方面介绍影响BF形成的相关信号分子,重点对BF形成过程中的信号分子调控机制进行概述,这对于深入揭示信号分子调控BF形成的机制十分必要。  相似文献   

9.
密度感应系统:对细菌致病力的自行调控   总被引:1,自引:1,他引:0  
细菌通过密度感应系统感受环境中的信号分子,进而调控菌群一系列生物学性状。研究发现密度感应系统能够调控细菌生物被膜形成、毒力基因表达及噬菌体感染等功能,其中基于密度感应系统调控细菌抵御噬菌体感染更是新发现,预期也将是未来数年的研究热点,其调控机制的阐明将为有效应用噬菌体开展耐药菌的防控展现广阔前景。本文将重点综述细菌密度感应系统对细菌致病相关功能的调控机制,旨在为病原菌的防控提供新思路。  相似文献   

10.
硫酸盐还原细菌(sulfate-reducing bacteria,SRB)形成的生物被膜是微生物导致金属锈蚀行为的主要原因,同时也是重金属污水微生物修复技术的关键因子。生物被膜形成及调控机制研究对SRB的防治和利用均十分重要。本文综述了近年来SRB生物被膜的研究进展,包括SRB生物被膜的胞外多聚物组成和控制因子,并着重阐述了目前已知的调控因子对SRB生物被膜形成的影响。  相似文献   

11.
大量研究报道生物被膜细菌对抗生素的耐药性是浮游菌的10–1 000倍,据报道细菌生物被膜是80%以上细菌感染的罪魁祸首,对医疗保健领域构成了严峻的挑战。植物提取物及其活性成分对细菌生物被膜有明显的抑制作用,包括减少生物被膜量、生物被膜活菌数以及清除已经成熟的生物被膜等。该文对这些有效的植物提取物及其活性成分进行了总结,并分析了其抗细菌生物被膜的作用机制。旨在为防治细菌生物被膜感染的植物类药物的开发提供参考。  相似文献   

12.
Advances in microscopic analysis and molecular genetics research methods promoted the acquisition of evidence that natural bacteria populations exist predominately as substrate attached biofilms. Bacteria in biofilms are able to exchange signals and display coordinated activity that is inherent to multicellular organisms. Formation of biofilm communities turned out to be one of the main survival strategies of bacteria in their ecological niche. Bacteria in attached condition in biofilm are protected from the environmental damaging factors and effects of antibacterial substances in the environment and host organism during infection. According to contemporary conception, biofilm is a continuous layer of bacterial cells that are attached to a surface and each other, and contained in a biopolymer matrix. Such bacterial communities may be composed of bacteria of one or several species, and composed of actively functioning cells as well as latent and uncultured forms. Particular attention has recently been paid to the role of biofilms in the environment and host organism. Microorganisms form biofilm on any biotic and abiotic surfaces which creates serious problems in medicine and various areas of economic activity. Currently, it is established that biofilms are one of the pathogenetic factors of chronic inflection process formation. The review presents data on ubiquity of bacteria existence as biofilms, contemporary methods of microbial community analysis, structural-functional features of bacterial biofilms. Particular attention is paid to the role of biofilm in chronic infection process formation, heightened resistance to antibiotics of bacteria in biofilms and possible mechanisms of resistance. Screening approaches for agents against biofilms in chronic infections are discussed.  相似文献   

13.
14.
Cyclic di-AMP has been recognized as a ubiquitous second messenger involved in the regulation of bacterial signal transduction. However, little is known about the control of its synthesis and its physiological role in bacteria. In this study, we report a novel mechanism of control of c-di-AMP synthesis and its effects on bacterial growth in Mycobacterium smegmatis. We identified a DisA homolog in M. smegmatis, MsDisA, as an enzyme involved in c-di-AMP synthesis. Furthermore, MsRadA, a RadA homolog in M. smegmatis was found to act as an antagonist of the MsDisA protein. MsRadA can physically interact with MsDisA and inhibit the c-di-AMP synthesis activity of MsDisA. Overexpression of MsdisA in M. smegmatis led to cell expansion and bacterial aggregation as well as loss of motility. However, co-expression of MsradA and MsdisA rescued these abnormal phenotypes. Furthermore, we show that the interaction between RadA and DisA and its role in inhibiting c-di-AMP synthesis may be conserved in bacteria. Our findings enhance our understanding of the control of c-di-AMP synthesis and its physiological roles in bacteria.  相似文献   

15.
The cell wall is a vital and multi-functional part of bacterial cells. For Staphylococcus aureus, an important human bacterial pathogen, surface proteins and cell wall polymers are essential for adhesion, colonization and during the infection process. One such cell wall polymer, lipoteichoic acid (LTA), is crucial for normal bacterial growth and cell division. Upon depletion of this polymer bacteria increase in size and a misplacement of division septa and eventual cell lysis is observed. In this work, we describe the isolation and characterization of LTA-deficient S. aureus suppressor strains that regained the ability to grow almost normally in the absence of this cell wall polymer. Using a whole genome sequencing approach, compensatory mutations were identified and revealed that mutations within one gene, gdpP (GGDEF domain protein containing phosphodiesterase), allow both laboratory and clinical isolates of S. aureus to grow without LTA. It was determined that GdpP has phosphodiesterase activity in vitro and uses the cyclic dinucleotide c-di-AMP as a substrate. Furthermore, we show for the first time that c-di-AMP is produced in S. aureus presumably by the S. aureus DacA protein, which has diadenylate cyclase activity. We also demonstrate that GdpP functions in vivo as a c-di-AMP-specific phosphodiesterase, as intracellular c-di-AMP levels increase drastically in gdpP deletion strains and in an LTA-deficient suppressor strain. An increased amount of cross-linked peptidoglycan was observed in the gdpP mutant strain, a cell wall alteration that could help bacteria compensate for the lack of LTA. Lastly, microscopic analysis of wild-type and gdpP mutant strains revealed a 13-22% reduction in the cell size of bacteria with increased c-di-AMP levels. Taken together, these data suggest a function for this novel secondary messenger in controlling cell size of S. aureus and in helping bacteria to cope with extreme membrane and cell wall stress.  相似文献   

16.
Human oral cavity as a model for the study of genome-genome interactions   总被引:3,自引:0,他引:3  
The enormous diversity of culturable bacteria within the oral microbial community coupled with experimental accessibility renders the human oral cavity a valuable model to investigate genome-genome interactions. The complex interactions of oral bacteria result in the formation of biofilms on the surfaces of the oral cavity. One mechanism thought to be important in biofilm formation is the coaggregation of bacterial partners. In this paper, we examine the role of coaggregation in oral biofilms and develop protocols to elucidate the spatial organization of bacterial species retained within oral biofilms. To explore these issues, we have employed two experimental systems: the saliva-coated flowcell and the retrievable enamel chip. From flowcell studies, we have determined that coaggregation can greatly influence the ability of an oral bacterial species to grow and be retained within the developing biofilm. To examine the spatial architecture of oral biofilms, fluorescent in situ hybridization protocols were developed that successfully target specific members of the oral microbial community. Together, these approaches provide insight into the development of oral biofilms and expand our understanding of genome-genome interactions.  相似文献   

17.
The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and those of dispersal are unknown. Here we establish that the RNA binding global regulatory protein CsrA (carbon storage regulator) of Escherichia coli K-12 serves as both a repressor of biofilm formation and an activator of biofilm dispersal under a variety of culture conditions. Ectopic expression of the E. coli K-12 csrA gene repressed biofilm formation by related bacterial pathogens. A csrA knockout mutation enhanced biofilm formation in E. coli strains that were defective for extracellular, surface, or regulatory factors previously implicated in biofilm formation. In contrast, this csrA mutation did not affect biofilm formation by a glgA (glycogen synthase) knockout mutant. Complementation studies with glg genes provided further genetic evidence that the effects of CsrA on biofilm formation are mediated largely through the regulation of intracellular glycogen biosynthesis and catabolism. Finally, the expression of a chromosomally encoded csrA'-'lacZ translational fusion was dynamically regulated during biofilm formation in a pattern consistent with its role as a repressor. We propose that global regulation of central carbon flux by CsrA is an extremely important feature of E. coli biofilm development.  相似文献   

18.
Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号