首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
环二鸟苷单磷酸(cyclic di-GMP或c-di-GMP)是细菌细胞中广泛存在的第二信使,调控细菌生物被膜发育、致病力、运动性、胞外多糖产生及细胞周期在内的诸多重要生理表型。c-di-GMP通过结合多种类型的效应子(包括核糖开关或效应蛋白)来发挥调控功能。由于c-di-GMP分子在构象上具有多变性,其结合的效应子同样具有多样性。新型效应蛋白的筛选、鉴定是当前细菌信号转导领域的研究热点和难点,也是解析c-di-GMP调控机制的首要环节。本文在阐述c-di-GMP结合不同类型的效应蛋白并调控细菌生物被膜发育的基础上,综述了目前筛选c-di-GMP效应蛋白的方法,包括遗传筛选、亲和色谱结合质谱鉴定、DRa CALA系统鉴定以及基于分子对接的预测等。同时,对验证c-di-GMP效应蛋白的技术,如等温微量热滴定、表面等离子共振、微量热泳动在内的多种验证方法进行了总结,对比了这些策略和方法在应用上的优、缺点,为在细菌及其真核宿主基因组水平鉴定c-di-GMP效应蛋白的研究提供参考。  相似文献   

2.
环二鸟苷酸——新型的细菌第二信使   总被引:1,自引:0,他引:1  
环二鸟苷酸(cyclic diguanylate,c-di-GMP)是新近发现的在细菌中普遍存在的第二信使分子,参与调节多种生理功能,包括细胞分化、从运动状态到生物被膜状态的转变、致病因子产生等.基于其对细菌抗生素耐药的物理屏障—生物被膜形成的影响,c-di-GMP的研究越来越受到人们的关注.细胞内c-di-GMP的产生受二鸟苷酸环化酶(diguanylate cyclase,DGC)合成和磷酸二酯酶(phosphodiesterase,PDE)降解两条途径调控.在结构上,通常DGC含有GGDEF结构域,PDE含有EAL结构域.c-di-GMP的作用靶点包括PilZ结构域和GEMM 核开关两种类型.本文综述了c-di-GMP的代谢途径、调控机理、生物学功能等方面的最新研究进展,并对c-di-GMP在今后研究中的应用和发展趋势进行展望.  相似文献   

3.
c-di-GMP对细菌胞外多糖合成与运输的调控   总被引:1,自引:0,他引:1  
环二鸟苷酸(Cyclic diguanylate,c-di-GMP)的发现已有29年。作为重要的细菌第二信使,c-di-GMP可参与调节细菌生物膜的合成与降解、运动、毒性、细胞周期、细胞分化等多种活动过程。胞外多糖(EPS)是细菌生物膜的主要组成成分,其合成和运输主要受c-di-GMP调控。目前细菌胞外多糖在医药、食品、农业、工业和环保等多个领域均有广泛的应用,其相关研究备受关注。本文旨在论述细菌中c-di-GMP合成与降解的调控,部分合成酶(Diguanylate cyclase,DGC)与降解酶(Phosphodiesterase,PDE)及其受体分子(Receptor)晶体结构等研究成果,并结合我们研究农杆菌ATCC31749中c-di-GMP对可德胶合成调控的基础上,重点阐述c-di-GMP对纤维素、藻酸盐、多聚氮乙酰葡萄糖胺(PNAG)和可德胶等EPS合成与运输的调控机制。  相似文献   

4.
大肠杆菌生物膜是由聚集于特定介质上的大肠杆菌菌体细胞相互黏附并分泌胞外基质聚合物(extracellular polymeric substances,EPS)而产生的一种结构复杂的膜状聚集物。感染宿主后的致病性大肠杆菌在形成生物膜后会极大地逃避免疫系统以及环境中各种有害因素对其的影响,对宿主造成持续甚至致命的伤害。环二鸟苷酸(cyclic diguanosine monophosphate,c-di-GMP)是广泛存在于细菌中的第二信使,在调节生物膜形成过程中起到至关重要的作用。基于此,本文对近些年来有关c-di-GMP对大肠杆菌生物膜形成过程中菌体的运动、黏附以及EPS产生机制的研究进行了综述,以期为从c-di-GMP角度抑制大肠杆菌生物膜提供依据和思路。  相似文献   

5.
细菌通过调控第二信使环二鸟苷酸(cyclic diguanylate, c-di-GMP)而促进其适应环境、存活及致病。【目的】本研究旨在建立有效的c-di-GMP水平检测方法,为大肠杆菌内c-di-GMP水平检测提供便利条件。【方法】根据c-di-GMP核糖开关受体的调控方式、荧光报告基因等设计引物,通过重叠聚合酶链反应(overlap polymerase chain reaction, overlap PCR)和同源重组酶构成基于核糖开关的双荧光素报告质粒pAmCherry-Vc2EGFP(pACVcE),然后构建c-di-GMP代谢基因过表达菌株和缺失菌株,利用pACVcE检测大肠杆菌内c-di-GMP水平。【结果】OverlapPCR扩增产物与目的靶序列一致,测序结果证明pACVcE序列正确。表达c-di-GMP合成酶DgcZ的大肠杆菌胞内c-di-GMP水平显著升高,而表达c-di-GMP降解酶PdeK的大肠杆菌胞内c-di-GMP水平显著降低。禽致病性大肠杆菌的胞内c-di-GMP水平检测发现c-di-GMP降解酶基因pdeK缺失后胞内的c-di-GMP水平显著升高。【结...  相似文献   

6.
一氧化氮(NO)是一种气体信号分子,具有调节血管张力、引起肿瘤细胞凋亡和减缓植物成熟等功能。最新研究发现,NO可以通过限制菌体对抗生素药物的摄入等保护细菌,但高浓度的NO对细菌又具有杀灭作用;与此同时NO通过双分子系统、c-di-GMP和群体感应等影响细菌生物膜的形成,但细菌种类不同NO的影响效果也不同。本文主要对NO在细菌抗菌机理和生物膜形成的分子作用等进行综述,同时,也对NO研究发展的新方向进行了展望。  相似文献   

7.
细菌群体感应(Quorum sensing,QS)被视为对抗细菌感染与解决细菌耐药性问题的新靶点。以AHLs为信号分子的LuxR/Ⅰ型群体感应系统广泛存在于革兰氏阴性菌包括多种临床致病菌中,因此寻找LuxR/Ⅰ型群体感应抑制剂(Quorum sensing inhibitors,QSIs)是研发抗革兰氏阴性致病菌药物的重要途径。迄今为止,已知的LuxR/Ⅰ型小分子QSIs来源包括化学合成、天然产物与已知药物库的化合物,大分子则包括群体感应淬灭酶与群体感应淬灭抗体。本文总结了近年来LuxR/Ⅰ型QSIs研究进展,为新型抗菌药物研发提供理论依据。  相似文献   

8.
张景翔  阎澜  姜远英 《菌物学报》2018,37(10):1378-1390
近30年来,侵袭性真菌感染发病率持续上升,病死率居高不下,而治疗药物十分有限是造成其高致死率的重要因素之一。因此,发现新的抗真菌靶点和药物,已成为迫切需要。正在研究的新的抗真菌靶点如下:一是信号通路介导的抗真菌靶点,包括钙调神经磷酸酶及其分子伴侣Hsp90、3-磷酸肌醇依赖性蛋白激酶(PKH)以及参与Ras蛋白修饰的相关酶等,其拮抗剂包括传统免疫抑制剂的类似物以及Hsp90抗体、KP-372-1和PS77以及手霉素A等;二是GPI锚定蛋白合成通路的催化酶,其抑制剂有E1210和M720等化合物;三是分泌型天冬氨酸蛋白酶,肽类、逆转录病毒抑制剂,以及砜类的衍生物等均可以抑制这一靶点;四是海藻糖的合成的两个关键酶Tps1和Tps2。鉴于侵袭性真菌感染严重影响人类公共健康安全,而新型抗真菌药物的研发又依赖于新靶点的探索,因此,本文靶向这一核心真菌临床问题,系统介绍了当前新的抗真菌药物靶点发展概况,并在靶点选择可行性以及针对靶点的药物研发策略上提出见解。  相似文献   

9.
环二鸟苷单磷酸(c-di-GMP)是细菌中广泛存在的一类核苷类第二信使分子,能够调控细菌的生物被膜形成、运动性、黏附、毒力以及胞外多糖的产生等众多生理活动。核糖开关是m RNA 5′-非翻译区(5′-Untranslational region,5′-UTR)的一段RNA序列,包含可以识别并结合配体的保守序列——适配体区(Aptamer domain,AD),以及结构多变、可以调控下游编码基因的表达平台区(Expression platform,EP)。当代谢物分子浓度比较高时,其与适配体区结合,引起下游的表达平台区发生构象变化,进而实现对下游基因的调节。目前已发现c-di-GMP-Ⅰ和c-di-GMP-Ⅱ两类c-di-GMP的核糖开关。它们通过特异性地结合c-di-GMP,调控种类繁多的下游基因的表达。c-di-GMP-I核糖开关分布广泛,尤其在厚壁菌门(Firmicutes)和变形菌门(Proteobacteria)的细菌中最为丰富。c-di-GMP-Ⅱ核糖开关具备变构核酶的功能,结合c-di-GMP后在其非典型剪切位点处发生结构变化,调节下游基因表达。文中围绕c-di-GMP核糖开关的发现、功能、分类以及下游调控基因的功能进行综述与分析。  相似文献   

10.
鼠疫耶尔森氏菌(Yersinia pestis,以下简称"鼠疫菌")是烈性传染病鼠疫的病原菌,以鼠蚤作为传播媒介。鼠疫菌在其传播媒介鼠蚤的前胃中形成生物被膜从而促进其在宿主间传播。鼠疫菌生物被膜的形成受第二信使分子环二鸟苷酸(c-di-GMP)的正向调控。鼠疫菌中c-di-GMP由二鸟苷酸环化酶(DGC)HmsT和HmsD合成,由磷酸二酯酶(PDE)HmsP降解。文中主要介绍影响鼠疫菌环二鸟苷酸代谢及生物被膜形成的调控因子,并对其作用机制进行讨论和总结。  相似文献   

11.
Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host’s immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation.  相似文献   

12.
It is now apparent that the signaling molecule 3',5'-cyclic diguanylic acid (c-di-GMP) is a central regulator of the prokaryote biofilm lifestyle and recent evidence also links this molecule to virulence. Environmentally responsive signal transduction systems that control expression and/or activity of the enzymes (GGDEF and EAL domain containing proteins) that are responsible for synthesis and degradation of c-di-GMP have recently been identified. Members of the phosphorelay family feature prominently amongst these systems, which include several with hybrid polydomain sensors and one that is similar to well-characterized chemotaxis-controlling pathways. These findings support the hypothesis that c-di-GMP levels are tightly controlled in response to a broad range, in terms of both diversity and intensity, of extracellular signals. Insight into how c-di-GMP affects changes in gene expression and/or protein activity has come from the demonstration that proteins containing the PilZ domain can bind c-di-GMP and control phenotypes involved in biofilm formation and virulence. These recent developments should pave the way for researchers to answer the important question of how a vast array of extracellular signals that are sensed by multiple sensory transduction pathways which all lead to the production or destruction of c-di-GMP are coordinated such that the appropriate phenotypic response is produced.  相似文献   

13.
An intracellular second messenger unique to bacteria, c-di-GMP, has gained appreciation as a key player in adaptation and virulence strategies, such as biofilm formation, persistence, and cytotoxicity. Diguanylate cyclases containing GGDEF domains and phosphodiesterases containing either EAL or HD-GYP domains have been identified as the enzymes controlling intracellular c-di-GMP levels, yet little is known regarding signal transmission and the sensory targets for this signaling molecule. Although limited in number, identified c-di-GMP receptors in bacteria are characterized by prominent diversity and multilevel impact. In addition, c-di-GMP has been shown to have immunomodulatory effects in mammals and several eukaryotic c-di-GMP sensors have been proposed. The structural biology of c-di-GMP receptors is a rapidly developing field of research, which holds promise for the development of novel therapeutics against bacterial infections. In this review, we highlight recent advances in identifying bacterial and eukaryotic c-di-GMP signaling mechanisms and emphasize the need for mechanistic structure-function studies on confirmed signaling targets.  相似文献   

14.
15.
C-di-GMP has emerged as an important bacterial signaling molecule that is involved in biofilm formation. Small molecules that can form biologically inactive complexes with c-di-GMP have the potential to be used as anti-biofilm agents. Herein, we report that water-soluble diamidinium/iminium aromatics (such as berenil), which are traditionally considered as minor groove binders of nucleic acids, are capable of aggregating c-di-GMP into G-quadruplexes via π-stacking interactions.  相似文献   

16.
The novel cyclic dinucleotide, 3',5'-cyclic diguanylic acid, cGpGp (c-di-GMP), is a naturally occurring small molecule that regulates important signaling mechanisms in prokaryotes. Recently, we showed that c-di-GMP has "drug-like" properties and that c-di-GMP treatment might be a useful antimicrobial approach to attenuate the virulence and pathogenesis of Staphylococcus aureus and prevent or treat infection. In the present communication, we report that c-di-GMP (50 microM) has striking properties regarding inhibition of cancer cell proliferation in vitro. c-di-GMP inhibits both basal and growth factor (acetylcholine and epidermal growth factor)-induced cell proliferation of human colon cancer (H508) cells. Toxicity studies revealed that exposure of normal rat kidney cells and human neuroblastoma cells to c-di-GMP at biologically relevant doses showed no lethal cytotoxicity. Cyclic dinucleotides, such as c-di-GMP, represent an attractive and novel "drug-platform technology" that can be used not only to develop new antimicrobial agents, but also to develop novel therapeutic agents to prevent or treat cancer.  相似文献   

17.
Many bacteria mediate important life-style decisions by varying levels of the second messenger c-di-GMP. Behavioral transitions result from the coordination of complex cellular processes such as motility, surface adherence or the production of virulence factors and toxins. While the regulatory mechanisms responsible for these processes have been elucidated in some cases, the global pleiotropic effects of c-di-GMP are poorly understood, primarily because c-di-GMP networks are inherently complex in most bacteria. Moreover, the quantitative relationships between cellular c-di-GMP levels and c-di-GMP dependent phenotypes are largely unknown. Here, we dissect the c-di-GMP network of Caulobacter crescentus to establish a global and quantitative view of c-di-GMP dependent processes in this organism. A genetic approach that gradually reduced the number of diguanylate cyclases identified novel c-di-GMP dependent cellular processes and unraveled c-di-GMP as an essential component of C. crescentus cell polarity and its bimodal life cycle. By varying cellular c-di-GMP concentrations, we determined dose response curves for individual c-di-GMP-dependent processes. Relating these values to c-di-GMP levels modeled for single cells progressing through the cell cycle sets a quantitative frame for the successive activation of c-di-GMP dependent processes during the C. crescentus life cycle. By reconstructing a simplified c-di-GMP network in a strain devoid of c-di-GMP we defined the minimal requirements for the oscillation of c-di-GMP levels during the C. crescentus cell cycle. Finally, we show that although all c-di-GMP dependent cellular processes were qualitatively restored by artificially adjusting c-di-GMP levels with a heterologous diguanylate cyclase, much higher levels of the second messenger are required under these conditions as compared to the contribution of homologous c-di-GMP metabolizing enzymes. These experiments suggest that a common c-di-GMP pool cannot fully explain spatiotemporal regulation by c-di-GMP in C. crescentus and that individual enzymes preferentially regulate specific phenotypes during the cell cycle.  相似文献   

18.
Cyclic-di-GMP (c-di-GMP) regulates many important bacterial processes. Freely diffusible intracellular c-di-GMP is determined by the action of metabolizing enzymes that allow integration of numerous input signals. c-di-GMP specifically regulates multiple cellular processes by binding to diverse target molecules. This review highlights important questions in research into the mechanisms of c-di-GMP signalling and its role in bacterial physiology.  相似文献   

19.
Bacterial second messengers are important for regulating diverse bacterial lifestyles. Cyclic di-GMP (c-di-GMP) is produced by diguanylate cyclase enzymes, named GGDEF proteins, which are widespread across bacteria. Recently, hybrid promiscuous (Hypr) GGDEF proteins have been described in some bacteria, which produce both c-di-GMP and a more recently identified bacterial second messenger, 3′,3′-cyclic-GMP-AMP (cGAMP). One of these proteins was found in the predatory Bdellovibrio bacteriovorus, Bd0367. The bd0367 GGDEF gene deletion strain was found to enter prey cells, but was incapable of leaving exhausted prey remnants via gliding motility on a solid surface once predator cell division was complete. However, it was unclear which signal regulated this process. We show that cGAMP signalling is active within B. bacteriovorus and that, in addition to producing c-di-GMP and some c-di-AMP, Bd0367 is a primary producer of cGAMP in vivo. Site-directed mutagenesis of serine 214 to an aspartate rendered Bd0367 into primarily a c-di-GMP synthase. B. bacteriovorus strain bd0367S214D phenocopies the bd0367 deletion strain by being unable to glide on a solid surface, leading to an inability of new progeny to exit from prey cells post-replication. Thus, this process is regulated by cGAMP. Deletion of bd0367 was also found to be incompatible with wild-type flagellar biogenesis, as a result of an acquired mutation in flagellin chaperone gene homologue fliS, implicating c-di-GMP in regulation of swimming motility. Thus the single Bd0367 enzyme produces two secondary messengers by action of the same GGDEF domain, the first reported example of a synthase that regulates multiple second messengers in vivo. Unlike roles of these signalling molecules in other bacteria, these signal to two separate motility systems, gliding and flagellar, which are essential for completion of the bacterial predation cycle and prey exit by B. bacteriovorus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号