首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

2.
The aim of the present study was to determine the effect of accelerated ageing on the composition and content of the soluble carbohydrates in pea seeds of six genotypes differing in the composition of raffinose family oligosaccharides. A gradual decrease in the concentration of higher homologues of raffinose was observed along with seed ageing. At the same time the seeds lost vigor, viability and germination capacity. No increase in the concentration of reducing sugars was recorded, but sorbitol accumulated in pea embryos. Sorbitol accumulation may indicate seed quality deterioration during storage.  相似文献   

3.
We compared the efficiency of two Agrobacterium tumefaciens strains, AGL 1 and KYRT1, for producing transgenic pea plants. KYRT1 is a disarmed strain of Chry5 that has been shown to be highly tumourigenic on soybean. The efficacies of the strains were compared using cotyledon explants from three pea genotypes and two plasmids. The peas were sourced from field-grown plants over three Southern Hemisphere summer seasons. Overall, KYRT1 was found to be on average threefold more efficient than AGL 1 for producing transgenic plants. We suggest that KYRT1 is sensitive to cocultivation temperature as the expected increase in efficiency was not achieved at high laboratory temperatures.Communicated by P. Debergh  相似文献   

4.
The effect of cadmium (Cd) was studied on root tips of Pisum sativum L. Seeds of P. sativum were treated with a series of concentrations ranging from 0.125, 0.250, 0.500 and 1.000 mM for 6 h. The effect of Cd was analyzed by studying the percentage seed germination, radicle length (RL), mitotic index (MI) and chromosomal aberrations (CAs) in root tip. The results revealed that Cd had significant impeding effect on the root meristem activity of P. sativum at 0.500 and 1.000 mM as noticed by reduction in seed germination percentage and RL compared to control. Furthermore, it also reduced MI in dose-related manner compared to control. Additionally, the variation in the percentage of mitotic abnormalities was observed. The overall percentage of aberrations generally increased with increasing concentrations of Cd. Among these abnormalities laggards, bridges, stickiness, precocious separation and fragments were most common. The obtained results demonstrated that the Cd treatment leads to a significant reduction in MI and increase in CAs. Overall results allow us to suggest that the Cd has clastogenic effect on the crop.  相似文献   

5.
Choudhury PR  Tanveer H  Dixit GP 《Genetica》2007,130(2):183-191
Among the cool season legume crops grown in India and the Indian sub-continent, peas are very popular and preferred by the growers as well as consumers for various uses. The third largest area in pea cultivation is occupied by India after Canada and Russia. Among the important and popular varieties of peas that are grown in India, several are from exotic background. But very little work has been done to carry out the genetic diversity present in the widely adapted Indian pea varieties using DNA markers. Twenty-four most popular and widely adapted varieties were subjected to RAPD analysis to find out the genetic relatedness among them using 60 decamer primers. All the primers used in our study were found to be polymorphic and seven of them showed 100% polymorphism. Out of 579 amplified products, 433 showed polymorphism (74.8%). On an average, 9.65 bands were amplified per primer. Cluster analysis based on Jaccard’s similarity coefficient using UPGMA grouped all the tall type varieties together, whereas, dwarf types formed two different clusters based upon their pedigree. The arithmetic mean heterozygosity (H av) value and marker index (MI) was found to be 0.496 and 4.787, respectively, thus this indicated the efficiency of RAPD as a marker system. Moreover, the calculated value of probability of identical match by chance suggested that about 1053 genotypes can be unambiguously distinguish by employing 60 RAPD primers.  相似文献   

6.
Pisum sativum (L.) plants were grown under “white” luminescent lamps, W [45 μ mol(quantum) m−2 s−1] or under the same irradiation supplemented with narrow spectrum red light-emitting diodes (LEDs), RE [λmax = 660 nm, Δλ = 20 nm, 40 μmol(quantum) m−2 s−1]. Significant differences in the chlorophyll (Chl) a fluorescence parameters, degree of State 1–State 2 transition, and the pigment-protein contents were found in plants grown under differing spectral composition. Addition of red LEDs to the “white light” resulted in higher effective quantum yield of photosystem 2 (PS2), i.e. F′v/F′m, linear electron transport (ϕPS2), photochemical quenching (qP), and lower non-photochemical quenching (qN as well as NPQ). The RE plants were characterised by higher degree State 1–State 2 transition, i.e. they were more effective in radiant energy utilisation. Judging from the data of “green” electrophoresis of Chl containing pigment-protein complexes of plants grown under various irradiation qualities, the percentage of Chl in photosystem 2 (PS2) reaction centre complexes in RE plants was higher and there was no difference in the total Chl bound with Chl-proteins of light-harvesting complexes (LHC2). Because the ratio between oligomeric and monomeric LHC2 forms was higher in RE plants, we suggest higher LHC2 stability in these ones.  相似文献   

7.
8.
Pisum sativum L., the garden pea crop plant, is serving as the unique model for genetic analyses of morphogenetic development of stipule, the lateral organ formed on either side of the junction of leafblade petiole and stem at nodes. The stipule reduced (st) and cochleata (coch) stipule mutations and afila (af), tendril-less (tl), multifoliate-pinna (mfp) and unifoliata-tendrilled acacia (uni-tac) leafblade mutations were variously combined and the recombinant genotypes were quantitatively phenotyped for stipule morphology at both vegetative and reproductive nodes. The observations suggest a role of master regulator to COCH in stipule development. COCH is essential for initiation, growth and development of stipule, represses the UNI-TAC, AF, TL and MFP led leafblade-like morphogenetic pathway for compound stipule and together with ST mediates the developmental pathway for peltate-shaped simple wild-type stipule. It is also shown that stipule is an autonomous lateral organ, like a leafblade and secondary inflorescence.  相似文献   

9.
Three genes, er1, er2 and Er3, conferring resistance to powdery mildew (Erysiphe pisi) in pea have been described so far. Because single gene-controlled resistance tends to be overcome by evolution of pathogen virulence, accumulation of several resistance genes into a single cultivar should enhance the durability of the resistance. Molecular markers linked to genes controlling resistance to E. pisi may facilitate gene pyramiding in pea breeding programs. Molecular markers linked to er1 and er2 are available. In the present study, molecular markers linked to Er3 have been obtained. A segregating F2 population derived from the cross between a breeding line carrying the Er3 gene, and the susceptible cultivar ‘Messire’ was developed and genotyped. Bulk Segregant Analysis (BSA) was used to identify Random Amplified Polymorphic DNA (RAPD) markers linked to Er3. Four RAPD markers linked in coupling phase (OPW04_637, OPC04_640, OPF14_1103, and OPAH06_539) and two in repulsion phase (OPAB01_874 and OPAG05_1240), were identified. Two of these, flanking Er3, were converted to Sequence Characterized Amplified Region (SCAR) markers. The SCAR marker SCW4637 co-segregated with the resistant gene, allowing the detection of all the resistant individuals. The SCAR marker SCAB1874, in repulsion phase with Er3, was located at 2.8 cM from the gene and, in combination with SCW4637, was capable to distinguish homozygous resistant individuals from heterozygous with a high efficiency. In addition, the validation for polymorphism in different genetic backgrounds and advanced breeding material confirmed the utility of both markers in marker-assisted selection.  相似文献   

10.
Short brassinosteroid (BR) mutants lk, lka and lkb of pea (Pisum sativum L.) were investigated by immunofluorescence microscopy to elucidate the role of brassinosteroids in cell elongation via an effect on the microtubules (MTs). This study adds to our knowledge the fact that brassinolide (BL) can cause MT realignment in azuki bean and rescue the MT organization of BR mutants in Arabidopsis. It provides novel information on both cortical and epidermal cells and presents detailed information about the ratios of all MT orientations present, ranging from transverse (perpendicular to the elongating axis) to longitudinal (parallel to the elongating axis). Experiments were conducted in vivo using intact plants with direct application of a small amount of brassinolide (BL) to the internode. Employing a BR-receptor mutant, lka, and the BR-synthesis mutants, lk and lkb, allowed the identification and isolation of any BR-induced responses in the MT cytoskeleton following BL application. Increases in growth rate were noted in all pea lines including WT following BL application. These increases were strong in the BR-synthesis mutants, but weak in the BR-receptor mutant. Immunofluorescence revealed significant differences in the average MT orientation of cortical cells of mutants versus WTs. Importantly, these mutants possessed abundant MTs, unlike the BR-deficient bul1-1 mutant in Arabidopsis. Following BL application, the epidermal and cortical cells of lk and lkb plants showed a large and significant shift in MT orientation towards more transverse, whereas lka plants showed a small and nonsignificant response in these cells. These results suggest that the BR response pathway is linked to the regulation of MT orientation.  相似文献   

11.
Cohen CK  Garvin DF  Kochian LV 《Planta》2004,218(5):784-792
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe2+ ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn2+ and Cd2+ into pea (Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063–1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe2+ in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity 59Fe2+ uptake system (K m =54–93 nM). Additionally, radiotracer (65Zn, 109Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx (K m of 4 and 100 M, for Zn2+ and Cd2+, respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe2+ transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.  相似文献   

12.
13.
The insecticidal activity of the leaf (ASAL) and bulb (ASAII) agglutinins from Allium sativum L. (garlic) against the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae) was studied using transgenic tobacco plants expressing the lectins under the control of the constitutive CaMV35S promoter. PCR analysis confirmed that the garlic lectin genes were integrated into the plant genome. Western blots and semi-quantitative agglutination assays revealed lectin expression at various levels in the transgenic lines. Biochemical analyses indicated that the recombinant ASAL and ASAII are indistinguishable from the native garlic lectins. Insect bioassays using detached leaves from transgenic tobacco plants demonstrated that the ectopically expressed ASAL and ASAII significantly (P < 0.05) reduced the weight gain of 4th instar larvae of S. littoralis. Further on, the lectins retarded the development of the larvae and their metamorphosis, and were detrimental to the pupal stage resulting in weight reduction and lethal abnormalities. Total mortality was scored with ASAL compared to 60% mortality with ASAII. These findings suggest that garlic lectins are suitable candidate insect resistance proteins for the control of S. littoralis through a transgenic approach.  相似文献   

14.
15.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

16.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

17.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

18.
The location of rRNA processing was analyzed by usingin situ hybridization with ITS1 probe and immunolabeling of anti-fibrillarin mAb in pea (Pisum sativum) root pole cells. The results showed that rRNA processing sites were in dense fibrillar components (DFCs) and granular components (GCs), but not in fibrillar centers (FCs). Low doses of actinomycin D (AMD) treatment can selectively suppress pre-rRNA synthesis but cannot disturb the processing of preformed pre-rRNAs. With AMD treatment prolonged, the density of labeled signals gradually decreased, indicating the preformed pre-rRNAs were gradually processed.  相似文献   

19.
We have investigated the floral ontogeny of Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis (of the eucalypt group, Myrtaceae) using scanning electron microscopy and light microscopy. Several critical characters for establishing relationships between these genera and to the eucalypts have been determined. The absence of compound petaline primordia in Arillastrum, Allosyncarpia, Stockwellia and Eucalyptopsis excludes these taxa from the eucalypt clade. Post-anthesis circumscissile abscission of the hypanthium above the ovary in Stockwellia, Eucalyptopsis and Allosyncarpia is evidence that these three taxa form a monophyletic group; undifferentiated perianth parts and elongated fusiform buds are characters that unite Stockwellia and Eucalyptopsis as sister taxa. No floral characters clearly associate Arillastrum with either the eucalypt clade or the clade of Stockwellia, Eucalyptopsis and Allosyncarpia.We gratefully acknowledge Clyde Dunlop and Bob Harwood (Northern Territory Herbarium) for collecting specimens of Allosyncarpia, and Bruce Gray (Atherton) for collecting specimens of Stockwellia. The Australian National Herbarium (CANB) kindly lent herbarium specimens of Eucalyptopsis for examination. This research was supported by a University of Melbourne Research Development Grant to Andrew Drinnan.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号