首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA (mtDNA) mutations are a cause of human disease and are proposed to have a role in human aging. Clonally expanded mtDNA point mutations have been detected in replicating tissues and have been shown to cause respiratory chain (RC) defects. The effect of these mutations on other cellular functions has not been established. Here, we investigate the consequences of RC deficiency on human colonic epithelial stem cells and their progeny in elderly individuals. We show for the first time in aging human tissue that RC deficiency attenuates cell proliferation and increases apoptosis in the progeny of RC deficient stem cells, leading to decreased crypt cell population.  相似文献   

2.
Morrison SJ  Spradling AC 《Cell》2008,132(4):598-611
Niches are local tissue microenvironments that maintain and regulate stem cells. Long-predicted from mammalian studies, these structures have recently been characterized within several invertebrate tissues using methods that reliably identify individual stem cells and their functional requirements. Although similar single-cell resolution has usually not been achieved in mammalian tissues, principles likely to govern the behavior of niches in diverse organisms are emerging. Considerable progress has been made in elucidating how the microenvironment promotes stem cell maintenance. Mechanisms of stem cell maintenance are key to the regulation of homeostasis and likely contribute to aging and tumorigenesis when altered during adulthood.  相似文献   

3.
Studies on stem cell aging are uncovering molecular mechanisms of regenerative decline, providing new insight into potential rejuvenating therapies.Studies on stem cell aging are uncovering molecular mechanisms of regenerative decline, providing new insight into potential rejuvenating therapies. Most human tissues retain an amazing ability to regenerate well into adulthood. Somatic stem cells are central to this ability, replacing damaged cells and thus keeping the body in a highly functional state. Yet this process does not continue unabated forever, as aging is accompanied by a loss of this regenerative capacity. Presently, studies in invertebrate and vertebrate model systems are advancing our understanding of regenerative decline and are identifying strategies for ‘rejuvenating’ therapies that have the potential to extend human health- and lifespan.The feasibility of rejuvenating interventions was demonstrated by classic studies in which exposure to a young systemic environment restored regenerative capacity of muscle stem cells in old mice.1 Similar rejuvenation has now been demonstrated for the central nervous system, suggesting that such interventions have systemic potential2 and raising the question of whether the lifespan of the organism could be extended by restoring the regenerative capacity of adult stem cells. This has already been demonstrated in flies, where improved intestinal stem cell function leads to enhanced longevity.3Such studies have inspired the burgeoning field of “stem cell aging.”4,5 A recent symposium at the Buck Institute for Research on Aging in Novato, CA showcased the field, bringing together researchers interested in the biology of aging and experts in stem cell biology, and covering topics ranging from basic research in stem cell aging to the use of stem cells in clinical applications. Clear from the meeting is that new molecular insight into stem cell aging is emerging at a rapid pace, revealing both the promises and challenges of deploying stem cell therapies for age-related diseases. The key questions are starting to be answered.  相似文献   

4.
The discovery that somatic cells can be induced into a pluripotent state by the expression of reprogramming factors has enormous potential for therapeutics and human disease modeling. With regard to aging and rejuvenation, the reprogramming process resets an aged, somatic cell to a more youthful state, elongating telomeres, rearranging the mitochondrial network, reducing oxidative stress, restoring pluripotency, and making numerous other alterations. The extent to which induced pluripotent stem cell (iPSC)s mime embryonic stem cells is controversial, however, as iPSCs have been shown to harbor an epigenetic memory characteristic of their tissue of origin which may impact their differentiation potential. Furthermore, there are contentious data regarding the extent to which telomeres are elongated, telomerase activity is reconstituted, and mitochondria are reorganized in iPSCs. Although several groups have reported that reprogramming efficiency declines with age and is inhibited by genes upregulated with age, others have successfully generated iPSCs from senescent and centenarian cells. Mixed findings have also been published regarding whether somatic cells generated from iPSCs are subject to premature senescence. Defects such as these would hinder the clinical application of iPSCs, and as such, more comprehensive testing of iPSCs and their potential aging signature should be conducted.  相似文献   

5.
Stem cells are central to the development and maintenance of many tissues. This is due to their capacity for extensive proliferation and differentiation into effector cells. More recently it has been shown that the proliferative and differentiative ability of stem cells decreases with age, suggesting that this may play a role in tissue aging. Down syndrome (DS), is associated with many of the signs of premature tissue aging including T-cell deficiency, increased incidence of early Alzheimer-type, Myelodysplastic-type disease and leukaemia. Previously we have shown that both hematopoietic (HSC) and neural stem cells (NSC) in patients affected by DS showed signs of accelerated aging. In this study we tested the hypothesis that changes in gene expression in HSC and NSC of patients affected by DS reflect changes occurring in stem cells with age. The profiles of genes expressed in HSC and NSC from DS patients highlight pathways associated with cellular aging including a downregulation of DNA repair genes and increases in proapoptotic genes, s-phase cell cycle genes, inflammation and angiogenesis genes. Interestingly, Notch signaling was identified as a potential hub, which when deregulated may drive stem cell aging. These data suggests that DS is a valuable model to study early events in stem cell aging.  相似文献   

6.
The review surveys own and the literature data on the plasticity of marine invertebrate stem cells. Stem and embryonic cell cultures of marine invertebrates are a novel model system characterized by a high level of physiological and synthetic processes. The production of biologically active substances in vitro may be an alternative to chemical synthesis and aquaculture. The factors involved in determination and maintenance of the pluripotency of marine invertebrate stem cells have been analyzed. The technology of the directed differentiation of marine invertebrate stem cells into certain functionally active cells in vitro embraces the use of different growth factors, various natural and artificial substrates, and unique bioactive compounds from marine invertebrate tissues. To increase the expression levels of regulatory genes, we applied genetically engineered constructions with foreign genes. The regulation of growth and differentiation of marine invertebrate stem cells opens new prospective uses for their application in marine biotechnology and is helpful for research in developmental biology.  相似文献   

7.
A decline in the replicative and regenerative capacity of adult stem cell populations is a major contributor to the aging process. Mitochondrial DNA (mtDNA) mutations clonally expand with age in human stem cell compartments including the colon, small intestine, and stomach, and result in respiratory chain deficiency. Studies in a mouse model with high levels of mtDNA mutations due to a defect in the proofreading domain of the mtDNA polymerase γ (mtDNA mutator mice) have established causal relationships between the accumulation of mtDNA point mutations, stem cell dysfunction, and premature aging. These mtDNA mutator mice have also highlighted that the consequences of mtDNA mutations upon stem cells vary depending on the tissue. In this review, we present evidence that these studies in mice are relevant to normal human stem cell aging and we explore different hypotheses to explain the tissue‐specific consequences of mtDNA mutations. In addition, we emphasize the need for a comprehensive analysis of mtDNA mutations and their effects on cellular function in different aging human stem cell populations.  相似文献   

8.
Directing the axis of cell division toward extrinsic and intrinsic cues plays a fundamental role in morphogenesis, asymmetric cell division, and stem cell self-renewal. Recent studies highlight the misorientation of the cell division axis as a cause of mammalian diseases, including polycystic kidney disease. Although the core regulators for oriented cell division have been identified in invertebrate model systems, we still have an imprecise picture of the relevant signaling networks in the mammalian system. The reasons for this include the lack of established approaches in mammalian cells to survey the molecules required for the spindle orientation. Here we summarize our recent study on a genome-scale RNA-mediated interference screen of human kinases to identify a new player for the oriented cell division in both culture cells and developing mammalian tissues.  相似文献   

9.
Oxygen is a fundamental element for all living organisms, and modifications in its concentration influence several physiological and pathological events such as embryogenesis, development and also aging. Regulation of oxygen levels is an important factor in neural stem cell biology (e.g. differentiation, growth and the capacity to generate more differentiated cells). Studies on neural stem cells in culture have deepened our knowledge of their survival, proliferation and differentiation pathways. However, traditional cell culture for neural stem cells is performed employing environmental oxygen levels of 20%, while the effective oxygen concentration in the developing and adult brain is significantly lower; this results in an important alteration of the in vivo conditions. Several data indicate that a so called "physiologic hypoxic condition" could strongly influence the growth of neural stem cells and their differentiation mechanisms both in vivo and in vitro. The present overview deals with the different mechanisms utilized by invertebrate and vertebrate organisms to respond to hypoxic conditions. It highlights how the adaptations and responses to different oxygen concentrations have changed along the developmental route and underlines the importance of oxygen concentration in neural physiology and differentiation, with a final hint to the involvement of hypoxia in brain cancer stem cells.  相似文献   

10.
The purpose of this editorial is to highlight recent developments in molecular biology tools and techniques in stem cell research and their applications to human diseases. Recent advancements in stem cell research and regenerative medicine are offering immense hope to cure human diseases and injuries, such as cancer, diabetes, Alzheimer's disease, Parkinson's disease, and traumatic brain injuries. In the last three decades, especially in the last decade, major breakthroughs have been seen in the conversion of adult stem cells into induced pluripotent stem cells, which in turn has led the way to developing stem cell therapies for human diseases. This article summarizes contributions of research into stem cell therapies.  相似文献   

11.
"Stem cell aging" is a novel concept that developed together with the advances of stem cell biology, especially the sophisticated prospectively isolation and characterization of multipotent somatic tissue stem cells. Although being immortal in principle, stem cells can also undergo aging processes and potentially contribute to organismal aging. The impact of an age-dependent decline of stem cell function weighs differently in organs with high or low rates of cell turnover. Nonetheless, most of the organ systems undergo age-dependent loss of homeostasis and functionality, and emerging evidence showed that this has to do with the aging of resident stem cells in the organ systems. The mechanisms of stem cell aging and its real contribution to human aging remain to be defined. Many antitumor mechanisms protect potential malignant transformation of stem cell by inducing apoptosis or senescence but simultaneously provoke stem cell aging. In this review, we try to discuss several concept of stem cell aging and summarize recent progression on the molecular mechanisms of stem cell aging.  相似文献   

12.
The proteostasis network adjusts protein composition and maintains protein integrity, which are essential processes for cell function and viability. Current efforts, given their intrinsic characteristics, regenerative potential and fundamental biological functions, have been directed to define proteostasis of stem cells. These insights demonstrate that embryonic stem cells and induced pluripotent stem cells exhibit an endogenous proteostasis network that not only modulates their pluripotency and differentiation but also provides a striking ability to suppress aggregation of disease-related proteins. Moreover, recent findings establish a central role of enhanced proteostasis to prevent the aging of somatic stem cells in adult organisms. Notably, proteostasis is also required for the biological purpose of adult germline stem cells, that is to be passed from one generation to the next. Beyond these links between proteostasis and stem cell function, we also discuss the implications of these findings for disease, aging, and reproduction.  相似文献   

13.
Aging is accompanied by the functional decline of cells, tissues, and organs, as well as, a striking increase in susceptibility to a wide range of diseases. Within a tissue, both differentiated cells and adult stem cells are susceptible to intrinsic and extrinsic changes while aging. Muscle derived stem cells (MDSCs) are tissue specific stem cells which have been studied well for their multipotential nature. Although there are reports relating to diminished function and regenerative capacity of aged MDSCs as compared to their young counterparts, not much has been reported relating to the concomitant gain in unipotent nature of aged MDSCs. In this study, we report an inverse correlation between aging and expression of adult/mesenchymal stem cell markers and a direct correlation between aging and myogenecity in MDSCs. Aged MDSCs were able to generate a greater number of dystrophin positive myofibres, as compared to, the young MDSCs when transplanted in muscle of dystrophic mice. Our data, therefore, suggests that aging stress adds to the decline in stem cell characteristics with a concomitant increase in unipotency, in terms of, myogenecity of MDSCs. This study, hence, also opens the possibilities of using unipotent aged MDSCs as potential candidates for transplantation in patients with muscular dystrophies.  相似文献   

14.
Sirtuins are stress‐responsive proteins that direct various post‐translational modifications (PTMs) and as a result, are considered to be master regulators of several cellular processes. They are known to both extend lifespan and regulate spontaneous tumor development. As both aging and cancer are associated with altered stem cell function, the possibility that the involvement of sirtuins in these events is mediated by their roles in stem cells is worthy of investigation. Research to date suggests that the individual sirtuin family members can differentially regulate embryonic, hematopoietic as well as other adult stem cells in a tissue‐ and cell type‐specific context. Sirtuin‐driven regulation of both cell differentiation and signaling pathways previously involved in stem cell maintenance has been described where downstream effectors involved determine the biological outcome. Similarly, diverse roles have been reported in cancer stem cells (CSCs), depending on the tissue of origin. This review highlights the current knowledge which places sirtuins at the intersection of stem cells, aging, and cancer. By outlining the plethora of stem cell‐related roles for individual sirtuins in various contexts, our purpose was to provide an indication of their significance in relation to cancer and aging, as well as to generate a clearer picture of their therapeutic potential. Finally, we propose future directions which will contribute to the better understanding of sirtuins, thereby further unraveling the full repertoire of sirtuin functions in both normal stem cells and CSCs.  相似文献   

15.
The nail is a continuous skin appendage. Cells located around the nails, which display coordinated homeostatic dynamics and release a flow of stem cells in response to regeneration, have been identified in mice. However, very few studies regarding human nail stem cells exist in the literature. Using specimens isolated from humans, we detected an unreported population of cells within the basal layer of postnatal human nail proximal folds (NPFs) and the nail matrix around the nail root. These cells were multi-expressing and expressed stem cell markers, such as keratin 15 (K15), keratin 14 (K14), keratin 19 (K19), CD29, CD34, and leucine-rich repeat-containing G protein-coupled receptor 6 (Lgr6). These cells were very similar to mouse nail stem cells in terms of cell marker expression and their location within the nail. We also found that the putative nail stem cells maintained their abundance with advancing age, but cell proliferation and nail growth rate were decreased on comparison of young and aged specimens. To summarize, we found a putative population of stem cells in postnatal human nails located at NPFs and the nail matrix. These cells may have potential for cell differentiation and be capable of responding to injury, and were retained, but may be hypofunctional during aging.  相似文献   

16.
The analysis of model systems has broadened our understanding of telomere-related aging processes. Telomerase-deficient mouse models have demonstrated that telomere dysfunction impairs tissue renewal capacity and shortens lifespan. Telomere shortening limits cell proliferation by activating checkpoints that induce replicative senescence or apoptosis. These checkpoints protect against an accumulation of genomically instable cells and cancer initiation. However, the induction of these checkpoints can also limit organ homeostasis, regeneration, and survival during aging and in the context of diseases. The decline in tissue regeneration in response to telomere shortening has been related to impairments in stem cell function. Telomere dysfunction impairs stem cell function by activation of cell-intrinsic checkpoints and by the induction of alterations in the micro- and macro-environment of stem cells. In this review, we discuss the current knowledge about the impact of telomere shortening on disease stages induced by replicative cell aging as indicated by studies on telomerase model systems.  相似文献   

17.
Almost all complex multicellular organisms on earth utilize oxygen for the production of energy. This strategy carries the risk for damaging ROS to be generated and so these biochemical pathways must be highly regulated. Because of this, regulation of oxidative-phosphorylation is tightly coordinated with every aspect of cellular physiology, including stem cell regulation during embryonic development and in adult organisms. The protein-deacetylase, SIRT1, has received much attention because of its roles in oxygen metabolism, cellular stress response, aging, and has been investigated in various species and cell types including embryonic stem cells. However, there is a dearth of information on SIRT1 in adult stem cells, which have a pivotal role in adult aging processes. Here, we discuss the potential relationships between SIRT1 and the surface receptor protein, Notch, with stem cell self-renewal, asymmetric cell division, signaling, and stem cell aging.  相似文献   

18.
19.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive impairment. It is caused by synaptic failure and excessive accumulation of misfolded proteins. To date, almost all advanced clinical trials on specific AD-related pathways have failed mostly due to a large number of neurons lost in the brain of patients with AD. Also, currently available drug candidates intervene too late. Stem cells have improved characteristics of self-renewal, proliferation, differentiation, and recombination with the advent of stem cell technology and the transformation of these cells into different types of central nervous system neurons and glial cells. Stem cell treatment has been successful in AD animal models. Recent preclinical studies on stem cell therapy for AD have proved to be promising. Cell replacement therapies, such as human embryonic stem cells or induced pluripotent stem cell–derived neural cells, have the potential to treat patients with AD, and human clinical trials are ongoing in this regard. However, many steps still need to be taken before stem cell therapy becomes a clinically feasible treatment for human AD and related diseases. This paper reviews the pathophysiology of AD and the application prospects of related stem cells based on cell type.  相似文献   

20.
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, are a group of incurable neurological disorders, characterized by the chronic progressive loss of different neuronal subtypes. However, despite its increasing prevalence among the ever-increasing aging population, little progress has been made in the coincident immense efforts towards development of therapeutic agents. Research interest has recently turned towards stem cells including stem cells-derived exosomes, neurotrophic factors, and their combination as potential therapeutic agents in neurodegenerative diseases. In this review, we summarize the progress in therapeutic strategies based on stem cells combined with neurotrophic factors and mesenchymal stem cells-derived exosomes for neurodegenerative diseases, with an emphasis on the combination therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号