首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A yeast strain heteroallelic at, two unlinked loci, ad 3 and ur 2 is used to study mitotic intragenic recombination. The recombination at these two loci is inhibited by L-histidine. The ad 3 mutation is necessary to have histidine inhibition, his function is not yet, clear. This mutation gives rise to the double requirement in adenine and histidine, and starvation for this amino acid might be the primary cause of a high level of genetic recombination. On the other hand, the biochemical defect of ad 3 mutants is related to folic coenzymes, and it might well be that these coenzymes play an unsuspected role in genetic recombination.  相似文献   

2.
3.
4.
We previously described a 5'-3' exonuclease required for recombination in vitro between linear DNA molecules with overlapping homologous ends. This exonuclease, referred to as exonuclease I (Exo I), has been purified more than 300-fold from vegetatively grown cells and copurifies with a 42-kDa polypeptide. The activity is nonprocessive and acts preferentially on double-stranded DNA. The biochemical properties are quite similar to those of Schizosaccharomyces pombe Exo I. Extracts prepared from cells containing a mutation of the Saccharomyces cerevisiae EXO1 gene, a homolog of S. pombe exo1, had decreased in vitro recombination activity and when fractionated were found to lack the peak of activity corresponding to the 5'-3' exonuclease. The role of EXO1 on recombination in vivo was determined by measuring the rate of recombination in an exo1 strain containing a direct duplication of mutant ade2 genes and was reduced sixfold. These results indicate that EXO1 is required for recombination in vivo and in vitro in addition to its previously identified role in mismatch repair.  相似文献   

5.
Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, beta-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv(+) revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.  相似文献   

6.
Recombination plays a central role in the repair of broken chromosomes in all eukaryotes. We carried out a systematic study of mitotic recombination. Using several assays, we established the chronological sequence of events necessary to repair a single double-strand break. Once a chromosome is broken, yeast cells become immediately committed to recombinational repair. Recombination is completed within an hour and exhibits two kinetic gaps. By using this kinetic framework we also characterized the role played by several proteins in the recombinational process. In the absence of Rad52, the broken chromosome ends, both 5' and 3', are rapidly degraded. This is not due to the inability to recombine, since the 3' single-stranded DNA ends are stable in a strain lacking donor sequences. Rad57 is required for two consecutive strand exchange reactions. Surprisingly, we found that the Srs2 helicase also plays an early positive role in the recombination process.  相似文献   

7.
8.
An ectopic recombination system using ura3 heteroalleles varying in size from 80 to 960 bp has been used to examine the effect of substrate length on spontaneous mitotic recombination. The ura3 heteroalleles were positioned either on nonhomologous chromosomes (heterochromosomal repeats) or as direct or inverted repeats on the same chromosome (intrachromosomal repeats). While the intrachromosomal events occur at rates at least 2 orders of magnitude greater than the corresponding heterochromosomal events, the recombination rate for each type of repeat considered separately exhibits a linear dependence on substrate length. The linear relationships allow estimation of the corresponding minimal efficient processing segments, which are approximately 250 bp regardless of the relative positions of the repeats in the yeast genome. An examination of the distribution of recombination events into simple gene conversion versus crossover events indicates that reciprocal exchange is more sensitive to substrate size than is gene conversion.  相似文献   

9.
Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.  相似文献   

10.
Summary A negative complementation experiment was used to study dominance in the ad2 gene of Saccharomyces cerevisiae. The wild type allele showed near complete dominance over both the remedial and the inactive mutant alleles. The remedial allele was dominant to a lesser extent (in 77.4% of the combinations) over the inactive mutant allele. In 22.6% of the cases, the inactive allele was able, contrary to expectation, to dominate and impose its inactivity on its remedial partner (negative complementation).At the protein level, these results suggest that the wild type protein, which is the outcome of long evolutionary selection, has the most stabilized activity. The remedial protein, although superior to that of the completely inactive mutant, was not stable enough to always resist the inactivating influence of its defect partner.Part of a thesis of the Faculty of Mathematical and Natural Sciences of Freiburg University.  相似文献   

11.
12.
Techniques are described for the use of various yeast strains to detect the induction of (1) mitotic crossing-over, (2) mitotic gene conversion, (3) forward mutation and (4) reverse mutation. The technique for the detection of mitotic crossing over is based on a diploid that carries two different alleles of the gene locus ade2. These alleles differ in their extent of colony pigmentation engendered on low-adenine media, and they complement each other to the effect that the diploid is white. Mitotic crossing over results in the formation of twin-sectored colonies with a red and a pink sector. The technique for the detection of mitotic gene conversion is based on the use of a heteroallelic diploid carrying two non-complementing alleles that cause a nutritional requirement. Mitotic gene conversion leads to the restoration of intact and dominant wild-type alleles that alleviate the nutritional requirement so that convertant cells can be selected on a minimal medium. The forward mutation technique is based on the use of a haploid strain with a defect in the ade2-gene locus which causes the formation of red colonies. Induction of forward mutation in a number of other loci prevents the accumulation of this red pigment so that induction of mutation can be detected by the formation of pink and white colonies. The reverse mutation technique is based on the restoration or compensation of a mutational defect causing a growth requirement. Mutants can be selected for on a minimal medium.  相似文献   

13.
Kappa-casein (CSN3) plays an important role in stabilising the Ca-sensitive caseins in the micelle. The European rabbit (Oryctolagus cuniculus) CSN3 has previously been shown to possess two alleles (A and B), which differ deeply in their intronic regions (indels of 100 and 1550 nucleotides in introns 1 and 4, respectively). Furthermore, a correlation between several reproductive performance traits and the different alleles was described. However, all these data were exclusively collected in rabbit domestic breeds, preventing a deeper understanding of the extensive polymorphism observed in the CSN3 gene. Additionally, the techniques available for the typing of both indel polymorphisms were until now not suitable for large-scale studies. In this report, we describe a simple, PCR-based typing method to distinguish rabbit CSN3 alleles. We analyse both ancient wild rabbit populations from the Iberian Peninsula and France, and the more recently derived English wild rabbits and domestic stocks. A new allele (C) showing another major indel (250 bp) in intron 1 was found, but exclusively detected in Iberian wild rabbits. In addition, our survey revealed the occurrence of new haplotypes in wild populations, suggesting that intragenic recombination is important in creating genetic diversity at this locus. This easy and low cost single-step PCR-based method results in an improvement over previous described techniques, can be easily set up in a routine molecular laboratory and would probably be a valuable tool in the management of rabbit domestic breeds.  相似文献   

14.
Fifteen different classically generated and mapped mutations at the tryptophan synthetase locus in Neurospora crassa have been characterized to the level of the primary sequence of the gene. This sequence analysis has demonstrated that intragenic recombination is accurate to order mutations within one open reading frame. While classic genetic analysis correctly ordered the mutations, the position of mutations characterized by gene sequence analysis was more accurate. A leaky mutation was found to have a wild-type primary sequence. The presence of unique polymorphisms in the primary sequence of the trp-3 gene from strain 861 confirms that it has a unique history relative to the other strains studied. Most strains that were previously shown to be immunologically nonreactive with antibody preparations raised against tryptophan synthetase protein were shown to have nonsense mutations. This work defines 14 alleles of the N. crassa trp-3 gene.  相似文献   

15.
We have isolated a recessive allele of the yeast protein kinase C gene (PKC1) which promotes an elevated rate of mitotic recombination and confers a temperature-sensitive growth defect. The rate of recombination was increased between genes in direct repeat and at a series of heteroalleles and was dependent upon the RAD52 gene product. The mutant pkc1 allele was sequenced and found to encode a single amino acid change within the catalytic domain. Osmotic stabilizing agents rescued the temperature-sensitive growth defect but not the hyperrecombination phenotype, indicating that the two traits are separable. This separability suggests that the PKC1 gene product (Pkc1p) regulates DNA metabolism by an alternate pathway to that used in the regulation of cell lysis. The regulation of recombination is a previously unidentified role for Pkc1p.  相似文献   

16.
17.
18.
Somatic mutations contribute to the development of age-associated disease. In earlier work, we found that, at high frequency, aging Saccharomyces cerevisiae diploid cells produce daughters without mitochondrial DNA, leading to loss of respiration competence and increased loss of heterozygosity (LOH) in the nuclear genome. Here we used the recently developed Mother Enrichment Program to ask whether aging cells that maintain the ability to produce respiration-competent daughters also experience increased genomic instability. We discovered that this population exhibits a distinct genomic instability phenotype that primarily affects the repeated ribosomal RNA gene array (rDNA array). As diploid cells passed their median replicative life span, recombination rates between rDNA arrays on homologous chromosomes progressively increased, resulting in mutational events that generated LOH at >300 contiguous open reading frames on the right arm of chromosome XII. We show that, while these recombination events were dependent on the replication fork block protein Fob1, the aging process that underlies this phenotype is Fob1-independent. Furthermore, we provide evidence that this aging process is not driven by mechanisms that modulate rDNA recombination in young cells, including loss of cohesion within the rDNA array or loss of Sir2 function. Instead, we suggest that the age-associated increase in rDNA recombination is a response to increasing DNA replication stress generated in aging cells.  相似文献   

19.
20.
Coïc E  Feldman T  Landman AS  Haber JE 《Genetics》2008,179(1):199-211
In wild-type diploid cells, heteroallelic recombination between his4A and his4C alleles leads mostly to His+ gene conversions that have a parental configuration of flanking markers, but approximately 22% of recombinants have associated reciprocal crossovers. In rad52 strains, gene conversion is reduced 75-fold and the majority of His+ recombinants are crossover associated, with the largest class being half-crossovers in which the other participating chromatid is lost. We report that UV irradiating rad52 cells results in an increase in overall recombination frequency, comparable to increases induced in wild-type (WT) cells, and surprisingly results in a pattern of recombination products quite similar to RAD52 cells: gene conversion without exchange is favored, and the number of 2n - 1 events is markedly reduced. Both spontaneous and UV-induced RAD52-independent recombination depends strongly on Rad50, whereas rad50 has no effect in cells restored to RAD52. The high level of noncrossover gene conversion outcomes in UV-induced rad52 cells depends on Rad51, but not on Rad59. Those outcomes also rely on the UV-inducible kinase Dun1 and Dun1's target, the repressor Crt1, whereas gene conversion events arising spontaneously depend on Rad59 and Crt1. Thus, there are at least two Rad52-independent recombination pathways in budding yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号