首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The steady-state levels and redox states of pyridine nucleotide pools have been studied in yeast as a function of external growth conditions. Yeast grown aerobically on 0.8% glucose show two distinct phases of logarithmic growth, a first phase utilizing glucose with ethanol accumulation, and a second phase utilizing ethanol. During growth on glucose, the size of the NADP pool (NADP+ + NADPH) is maintained at approximately 12% the size of the NAD pool (NAD+ + NADH). Upon exhaustion of glucose, the mechanism(s) that maintain the levels of NADP relative to NAD are altered, resulting in a rapid 2- to 2.5-fold decrease in the size of the NADP pool relative to the size of the NAD pool. The lower levels of NADP are maintained during growth on ethanol. The NAD pool is approximately 50% NADH during both the glucose and ethanol phases of growth, while the NADP pool is approximately 67 and 48% NADPH during the glucose and ethanol phases of growth, respectively. Rapid media transfer experiments show that the decrease in NADP is reversible, that it does not require the net synthesis of pyridine nucleotide or protein, and that changes in the size of the NADP pool relative to the total pyridine nucleotide pool are correlated with changes in the redox state of the NADP pool.  相似文献   

2.
The goal was to determine whether endogenous cytosolic NAD(P)H:quinone oxidoreductase 1 (NQO1) preferentially uses NADPH or NADH in intact pulmonary arterial endothelial cells in culture. The approach was to manipulate the redox status of the NADH/NAD(+) and NADPH/NADP(+) redox pairs in the cytosolic compartment using treatment conditions targeting glycolysis and the pentose phosphate pathway alone or with lactate, and to evaluate the impact on the intact cell NQO1 activity. Cells were treated with 2-deoxyglucose, iodoacetate, or epiandrosterone in the absence or presence of lactate, NQO1 activity was measured in intact cells using duroquinone as the electron acceptor, and pyridine nucleotide redox status was measured in total cell KOH extracts by high-performance liquid chromatography. 2-Deoxyglucose decreased NADH/NAD(+) and NADPH/NADP(+) ratios by 59 and 50%, respectively, and intact cell NQO1 activity by 74%; lactate restored NADH/NAD(+), but not NADPH/NADP(+) or NQO1 activity. Iodoacetate decreased NADH/NAD(+) but had no detectable effect on NADPH/NADP(+) or NQO1 activity. Epiandrosterone decreased NQO1 activity by 67%, and although epiandrosterone alone did not alter the NADPH/NADP(+) or NADH/NAD(+) ratio, when the NQO1 electron acceptor duroquinone was also present, NADPH/NADP(+) decreased by 84% with no impact on NADH/NAD(+). Duroquinone alone also decreased NADPH/NADP(+) but not NADH/NAD(+). The results suggest that NQO1 activity is more tightly coupled to the redox status of the NADPH/NADP(+) than NADH/NAD(+) redox pair, and that NADPH is the endogenous NQO1 electron donor. Parallel studies of pulmonary endothelial transplasma membrane electron transport (TPMET), another redox process that draws reducing equivalents from the cytosol, confirmed previous observations of a correlation with the NADH/NAD(+) ratio.  相似文献   

3.
Saccharomyces cerevisiae contains three NADH/NAD(+) kinases, one of which is localized in mitochondria and phosphorylates NADH in preference to NAD(+). Strand et al. reported that a yeast mutation in POS5, which encodes the mitochondrial NADH kinase, is a mutator, specific for mitochondrial genes (Strand, M. K., Stuart, G. R., Longley, M. J., Graziewicz, M. A., Dominick, O. C., and Copeland, W. C. (2003) Eukaryot. Cell 2, 809-820). Because of the involvement of NADPH in deoxyribonucleotide biosynthesis, we asked whether mitochondria in a pos5 deletion mutant contain abnormal deoxyribonucleoside triphosphate (dNTP) pools. We found the pools of the four dNTPs to be more than doubled in mutant mitochondrial extracts relative to wild-type mitochondrial extracts. This might partly explain the mitochondrial mutator phenotype. However, the loss of antioxidant protection is also likely to be significant. To this end, we measured pyridine nucleotide pools in mutant and wild-type mitochondrial extracts and found NADPH levels to be diminished by ~4-fold in Δpos5 mitochondrial extracts, with NADP(+) diminished to a lesser degree. Our data suggest that both dNTP abnormalities and lack of antioxidant protection contribute to elevated mitochondrial gene mutagenesis in cells lacking the mitochondrial NADH kinase. The data also confirm previous reports of the specific function of Pos5p in mitochondrial NADP(+) and NADPH biosynthesis.  相似文献   

4.
A radioisotopic, enzymatic cycling procedure was used to measure NAD, NADH, NADP and NADPH in cultured human lymphocytes at 0, 24 and 48 h after exposure to phytohemagglutinin (PHA). During the 0–24 h period after PHA addition NAD and NADH were increased in both control and test cultures leading to a decrease in the NAD: NADH ratio. During the 24–48 h period increases in NAD and NADH occurred in test cultures in parallel with increased incorporation of [3H]TdR. No change in the NAD: NADH ratio was seen. The results indicate that the levels of NAD and NADH may be affected by the culture conditions and that increases in these compounds occur in stimulated cells during a time period in which DNA turnover is elevated and cell volume is increased but before extensive cell division.  相似文献   

5.
A freshwater Pseudomonas sp. was grown in continuous culture under steady-state conditions in L-lactate-, succinate-, glucose- or ammonium-limited media. Under carbon limitation, the NAD(H) (i.e. NAD + NADH) concentration of the organisms increased exponentially from approximately 2 to 7 mumol/g dry wt as the culture dilution rate (D) was decreased from 0.5 to 0.02 h-1. Organisms grown at a given D in any of the carbon-limited media possessed very similar levels of NAD(H). Therefore, under these conditions, cellular NAD(H) was only a function of the culture O and was independent of the nature of the culture carbon source. D had no influence on the NAD(H) content of cells grown under ammonium limitation. In contrast, cellular NADH concentration was not influenced by D in carbon- or ammonium-limited media. In L-lactate-limited medium, bacteria possessed 0.14 mumol NADH/g dry wt; very similar levels were found in organisms grown in the other media. The results are consistent with those of Wimpenny & Firth (1972) that bacteria rigidly maintain a constant NADH level rather than a constant constant NADH: NAD ratio. NADP(H) (i.e. NADP + NADPH) and NADPH levels were also not influenced by changes in the culture carbon source or in D; in L-lactate-limited medium these concentrations were 0.97 and 0.53 mumol/g cell dry wt, respectively. The NADPH:NADP(H) ratio was much higher than the NADH:NAD(H) ratio, averaging 55% in carbon-limited cells.  相似文献   

6.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

7.
When the extracellular concentration of glucose was raised from 3 mM to 7 mM (the concentration interval in which beta-cell depolarization and the major decrease in K+ permeability occur), the cytosolic free [NADPH]/[NADP+] ratio in mouse pancreatic islets increased by 29.5%. When glucose was increased to 20 mM, a 117% increase was observed. Glucose had no effect on the cytosolic free [NADH]/[NAD+] ratio. Neither the cytosolic free [NADPH]/[NADP+] ratio nor the corresponding [NADH]/[NAD+] ratio was affected when the islets were incubated with 20 mM-fructose or with 3 mM-glucose + 20 mM-fructose, although the last-mentioned condition stimulated insulin release. The insulin secretagogue leucine (10 mM) stimulated insulin secretion, but lowered the cytosolic free [NADPH]/[NADP+] ratio; 10 mM-leucine + 10 mM-glutamine stimulated insulin release and significantly enhanced both the [NADPH]/[NADP+] ratio and the [NADH]/[NAD+] ratio. It is concluded that the cytosolic free [NADPH]/[NADP+] ratio may be involved in coupling beta-cell glucose metabolism to beta-cell depolarization and ensuing insulin secretion, but it may not be the sole or major coupling factor in nutrient-induced stimulation of insulin secretion.  相似文献   

8.
We studied the physiological effect of the interconversion between the NAD(H) and NADP(H) coenzyme systems in recombinant Saccharomyces cerevisiae expressing the membrane-bound transhydrogenase from Escherichia coli. Our objective was to determine if the membrane-bound transhydrogenase could work in reoxidation of NADH to NAD+ in S. cerevisiae and thereby reduce glycerol formation during anaerobic fermentation. Membranes isolated from the recombinant strains exhibited reduction of 3-acetylpyridine-NAD+ by NADPH and by NADH in the presence of NADP+, which demonstrated that an active enzyme was present. Unlike the situation in E. coli, however, most of the transhydrogenase activity was not present in the yeast plasma membrane; rather, the enzyme appeared to remain localized in the membrane of the endoplasmic reticulum. During anaerobic glucose fermentation we observed an increase in the formation of 2-oxoglutarate, glycerol, and acetic acid in a strain expressing a high level of transhydrogenase, which indicated that increased NADPH consumption and NADH production occurred. The intracellular concentrations of NADH, NAD+, NADPH, and NADP+ were measured in cells expressing transhydrogenase. The reduction of the NADPH pool indicated that the transhydrogenase transferred reducing equivalents from NADPH to NAD+.  相似文献   

9.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

10.
In Escherichia coli, the pentose phosphate pathway is one of the main sources of NADPH. The first enzyme of the pathway, glucose-6-phosphate dehydrogenase (G6PDH), is generally considered an exclusive NADPH producer, but a rigorous assessment of cofactor preference has yet to be reported. In this work, the specificity constants for NADP and NAD for G6PDH were determined using a pure enzyme preparation. Absence of the phosphate group on the cofactor leads to a 410-fold reduction in the performance of the enzyme. Furthermore, the contribution of the phosphate group to binding of the transition state to the active site was calculated to be 3.6 kcal·mol(-1). In order to estimate the main kinetic parameters for NAD(P) and NAD(P)H, we used the classical initial-rates approach, together with an analysis of reaction time courses. To achieve this, we developed a new analytical solution to the integrated Michaelis-Menten equation by including the effect of competitive product inhibition using the ω-function. With reference to relevant kinetic parameters and intracellular metabolite concentrations reported by others, we modeled the sensitivity of reduced cofactor production by G6PDH as a function of the redox ratios of NAD/NADH (rR(NAD)) and NADP/NADPH (rR(NADP)). Our analysis shows that NADPH production sharply increases within the range of thermodynamically feasible values of rR(NADP), but NADH production remains low within the range feasible for rR(NAD). Nevertheless, we show that certain combinations of rR(NADP) and rR(NAD) sustain greater levels of NADH production over NADPH.  相似文献   

11.
Marohnic CC  Bewley MC  Barber MJ 《Biochemistry》2003,42(38):11170-11182
Microsomal cytochrome b(5) reductase (EC 1.6.2.2) catalyzes the reduction of ferricytochrome b(5) using NADH as the physiological electron donor. Site-directed mutagenesis has been used to engineer the soluble rat cytochrome b(5) reductase diaphorase domain to utilize NADPH as the preferred electron donor. Single and double mutations at residues D239 and F251 were made in a recombinant expression system that corresponded to D239E, S and T, F251R, and Y, D239S/F251R, D239S/F251Y, and D239T/F251R, respectively. Steady-state turnover measurements indicated that D239S/F251Y was bispecific while D239T, D239S/F251R, and D239T/F251R were each NADPH-specific. Wild-type (WT) cytochrome b(5) reductase showed a 3700-fold preference for NADH whereas the mutant with the highest NADPH efficiency, D239T, showed an 11-fold preference for NADPH, a 39200-fold increase. Wild-type cytochrome b(5) reductase only formed a stable charge-transfer complex with NADH while D239T formed complexes with both NADH and NADPH. The rates of hydride ion transfer, determined by stopped-flow kinetics, were k(NADH-WT) = 130 s(-1), k(NADPH-WT) = 5 s(-1), k(NADH-D239T) = 180 s(-1), and k(NADPH-D239T) = 73 s(-1). K(s) determinations by differential spectroscopy demonstrated that D239T could bind nonreducing pyridine nucleotides with a phosphate or a hydroxyl substituent at the 2' position, whereas wild-type cytochrome b(5) reductase would only bind 2' hydroxylated molecules. Oxidation-reduction potentials (E degrees ', n = 2) for the flavin cofactor were WT = -268 mV, D239T = -272 mV, WT+NAD(+) = -190 mV, D239T+NAD(+) = -206 mV, WT+NADP(+) = -253 mV, and D239T+NADP(+) = -215 mV, which demonstrated the thermodynamic contribution of NADP(+) binding to D239T. The crystal structures of D239T and D239T in complex with NAD(+) indicated that the loss of the negative electrostatic surface that precluded 2' phosphate binding in the wild-type enzyme was primarily responsible for the observed improvement in the use of NADPH by the D239T mutant.  相似文献   

12.
Mitogen stimulation of purified human T-lymphocytes with the phorbol ester 12-O-tetradecanoyl, phorbol-13-acetate (TPA) and a monoclonal antibody to the T3 cell surface antigen caused a 6-11-fold increase in cellular levels of poly(ADP-ribose) polymerase, a 6-20-fold amplification of cellular NAD+ levels and a 3-21-fold increase in NADP+ levels. Treatment of the cells with a combination of the two mitogenic signals also caused a 5-20-fold increase in NMN pyrophosphorylase activity, a 3-14-fold increase in ATP-NMN adenylyl transferase activity, and a 5-13-fold increase in NAD kinase activity. This is the first report showing induction of these three enzymes as part of the mitogenic response in purified human T-lymphocytes. Maximum increases in activity of each of these three enzymes required the combined presence of TPA and monoclonal antibody to human T-cell T3 antigen anti-T3. Analysis of the relative enzyme levels indicates that NMN pyrophosphorylase is the rate-limiting enzyme for NAD synthesis and NAD kinase is the rate-limiting enzyme for NADP synthesis.  相似文献   

13.
Aldehyde dehydrogenase (ALDH) activity was measured in primary cultures of normal human hepatocytes and of the human hepatoma cell line HepG2 after application of phenobarbital (PB) or 3-methylcholanthrene (MC) for 5 days. Treatment with PB alone resulted in a significant increase in both protein and DNA content at concentrations of 2 and 3 mM. Treatment with MC at a concentration as low as 5 microM led to a significant loss of cells when it lasted more than 5 days. Concentrations of 3-5 mM of PB in the media of HepG2 cell cultures caused a 2-fold enhancement of the activity of ALDH, as measured with NAD and propionaldehyde (P/NAD) or benzaldehyde (B/NAD). On the other hand, MC-treated cultures (5 microM) showed a 20-fold increase in enzyme activity measured with NADP and benzaldehyde (B/NADP), and a 2-fold increase in B/NAD activity. Combined treatment with both PB and MC led to an effect of dynamic synergism as far as B/NAD and B/NADP activities are concerned, suggesting a metabolite of MC as the mediator for the increase of ALDH activity. Normal human hepatocytes in primary cultures responded to PB (3 mM) in a similar way as HepG2 cells as far as DNA and protein content and ALDH activity are concerned. It is concluded, that HepG2 hepatoma cells behave similar to the normal hepatocytes in terms of ALDH regulation and can be used for studies on the activity of ALDH as modified by added xenobiotics.  相似文献   

14.
Slices of hypocotyls from 3-day-old seedlings of Vigna sesquipedalis (L.) Fruwirth in the germination stage were incubated under various gaseous conditions. The NADP+NADPH level in the hypocotyl slices changed with the oxygen tension. A high NADP+NADPH level was observed under aerobic conditions and a low NADP+NADPH level under anaerobic conditions.

The 100 × NADH/NAD+NADH ratio increased greatly under anaerobic conditions. In general a low NADP + NADPH level corresponded with a high 100 × NADH/NAD+NADH ratio. On the basis of the results given in the following paper, it was discussed that the slowness of NADH oxidation in hypocotyl tissue due to anaerobic conditions results in the inhibition of NADP formation.

The variation of the NADP+NADPH level was considered to produce a modification of the carbohydrate metabolism.

The NADP+NADPH level in E. coli cells suspended in glucose solution also changed with the oxygen tension.

  相似文献   

15.
Nicotinamide nucleotide coenzymes were estimated enzymatically in cucumber leaves (Cucumis sativus L. cv. Suisei No. 2) during ammonium toxicity. The contents of all the coenzymes (NAD(H) and NADP(H)) were found to be higher in the ammonium-treated plants than in the control plants, and the difference attained a maximum at 5 days after the initiation of ammonium treatment. Thereafter, the contents of NAD and NADH returned towards the control level, but NADP and NADPH levels were lowered in injured plants. The ratios of NAD/NAD + NADH and NADP/NADP ++ NADPH were little altered by the ammonium treatment. Changes of nicotinamide nucleotide coenzymes are discussed in relation to respiratory metabolism in cucumber leaves during ammonium toxicity.  相似文献   

16.
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.  相似文献   

17.
Alcohol dehydrogenase (ADH) and glucose-6-phosphate dehydrogenase (G6PDH) activities of cetyltrimethylammonium bromide permeabilized baker's yeast whole cells were employed to prepare reduced nicotinamide nucleotides NADH and NADPH from their corresponding oxidised forms. Both NADH and NADPH were found to be stable in the presence of permeabilized cells under the conditions of preparation. No dephosphorylation of NADP+ to NAD+ or of NADPH to NADH was found. Reduction is complete and the prepared NADH and NADPH are chromatographically pure. Since readily available Baker's yeast cells were used instead of expensive isolated enzyme the method described here is simple, economical, and easy to scale up.  相似文献   

18.
The increase of sorbitol and fructose levels caused by aldose reductase activation and sorbitol dehydrogenase inhibition were observed in sciatic nerve of streptozotocin-diabetic rats. Elevated polyol pathway activity has been implicated in the development of diabetic complications such as neuropathy. The regulation of polyol pathway enzymes is based on the changes of redox state of free nicotinamide nucleotides. The decrease of the NADP+/NADPH ratio in cytosolic compartment of sciatic nerve cells activated aldose reductase and the decrease of the NAD+/NADH ratio inhibited sorbitol dehydrogenase. Nicotinamide as a precursor of NAD+ biosynthesis increased the free NADP+/NADPH and NAD+/NADH ratios and inhibited the activity of polyol pathway. The sorbitol level decreased in sciatic nerve of nicotinamide-treated streptozotocin-diabetic rats as compared to non-treated ones. Thus, the data provide evidence for important role of nicotinamide, as an antidiabetic drug, in prevention or correction of diabetic neuropathy.  相似文献   

19.
The AKRs (aldo-keto reductases) are a superfamily of enzymes which mainly rely on NADPH to reversibly reduce various carbonyl-containing compounds to the corresponding alcohols. A small number have been found with dual NADPH/NADH specificity, usually preferring NADPH, but none are exclusive for NADH. Crystal structures of the dual-specificity enzyme xylose reductase (AKR2B5) indicate that NAD+ is bound via a key interaction with a glutamate that is able to change conformations to accommodate the 2'-phosphate of NADP+. Sequence comparisons suggest that analogous glutamate or aspartate residues may function in other AKRs to allow NADH utilization. Based on this, nine putative enzymes with potential NADH specificity were identified and seven genes were successfully expressed and purified from Drosophila melanogaster, Escherichia coli, Schizosaccharomyces pombe, Sulfolobus solfataricus, Sinorhizobium meliloti and Thermotoga maritima. Each was assayed for co-substrate dependence with conventional AKR substrates. Three were exclusive for NADPH (AKR2E3, AKR3F2 and AKR3F3), two were dual-specific (AKR3C2 and AKR3F1) and one was specific for NADH (AKR11B2), the first such activity in an AKR. Fluorescence measurements of the seventh protein indicated that it bound both NADPH and NADH but had no activity. Mutation of the aspartate into an alanine residue or a more mobile glutamate in the NADH-specific E. coli protein converted it into an enzyme with dual specificity. These results show that the presence of this carboxylate is an indication of NADH dependence. This should allow improved prediction of co-substrate specificity and provide a basis for engineering enzymes with altered co-substrate utilization for this class of enzymes.  相似文献   

20.
Ferredoxin-NADP(+) reductase catalyses NADP(+) reduction, being specific for NADP(+)/H. To understand coenzyme specificity determinants and coenzyme specificity reversion, mutations at the NADP(+)/H pyrophosphate binding and of the C-terminal regions have been simultaneously introduced in Anabaena FNR. The T155G/A160T/L263P/Y303S mutant was produced. The mutated enzyme presents similar k(cat) values for NADPH and NADH, around 2.5 times slower than that reported for WT FNR with NADPH. Its K(m) value for NADH decreased 20-fold with regard to WT FNR, whereas the K(m) for NADPH remains similar. The combined effect is a much higher catalytic efficiency for NAD(+)/H, with a minor decrease of that for NADP(+)/H. In the mutated enzyme, the specificity for NADPH versus NADH has been decreased from 67,500 times to only 12 times, being unable to discriminate between both coenzymes. Additionally, giving the role stated for the C-terminal Tyr in FNR, its role in the energetics of the FAD binding has been analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号