首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The t(11;22)(q23;q11) translocation is the most frequently encountered familial reciprocal translocation in humans. In the majority of reported cases ascertainment has been through the birth of a child with the chromosomal constitution 47,XX,+der(22) or 47,XY,+der(22), i.e., tertiary trisomy. Previous segregation analysis of familial cases showed a number of interesting features. Thus, euploid unbalanced genotypes resulting from adjacent segregation are absent in the progeny, and only tertiary trisomic offspring are recovered. To explain this unusual progeny output we present here a model for the meiotic behavior of this translocation in the carriers based on an analysis of cytogenetic data of progeny of carriers. This model predicts the formation of a chain trivalent with chromosome order 11-der(11)-22 during prophase I and its predominant alternate orientation at metaphase I.  相似文献   

2.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

3.
A dysmorphic newborn with 45,x,der(1)inv(1)(p13;qter)t(y;1)(pter-->q11;p13),-Y de novo karyotype: Y/autosome translocations are very rare chromosomal rearrangements. In most cases, the long arm of the Y chromosome is translocated onto an autosome and most patients are referred because of male infertility. Y/1 translocations are very rare, and have been reported in seven patients so far. Pericentric inversions may be seen in all chromosomes and are not associated with phenotypic abnormalities. Here we report a 6-day old male baby with prenatal growth retardation, frontal bossing, hypertelorism, micrognathia, cleft soft palate, absent uvula, hypospadias, simian line in both hands and hammer toes. Cytogenetic analysis was performed with GTG-banding, C-banding and FISH analysis containing X centromeric probe, Yq12-qter locus specific probe and whole chromosome Y probe. An unbalanced Y/1 translocation was diagnosed: 45,X,der(1)inv(1)(p13;qter)t(Y;1)(pter-->q11;p13),-Y.  相似文献   

4.
Summary We describe a case of tertiary trisomy (22q11q) 47,XX,+der(22),(22pter22q13: : 11q2511qter) in a child with mental retardation, cleft palate, and congenital heart disease resulting from 3: 1 meiotic nondisjunction in a maternal (11;22) translocation carrier. The clinical findings in previously reported cases are reviewed and compared with the features of reported patients with partial trisomy 11q and trisomy 22 syndromes. Half of the ten reported families had additional balanced translocation carriers who may have an increased risk of having a liveborn child with an MCA/MR syndrome, although none have been reported to date.  相似文献   

5.
Herein, we describe a case of an infertile man detected in postnatal diagnosis with FISH characterization and array-CGH used for genome-wide screening which allowed the identification of a complex rearrangement involving sex chromosomes, apparently without severe phenotypic consequences. The deletion detected in our patient has been compared with previously reported cases leading us to propose a hypothetical diagnostic algorithm that would be useful in similar clinical situations, with imperative multi disciplinary approach integrated with genetic counseling. Our patient, uniquely of reproductive age, is one of six reported cases of duplication of Xp22.3 (~ 8.4 Mb) segment and contemporary deletion of Yq (~ 42.9 Mb) with final karyotype as follows:
46,X,der(Y),t(X;Y)(Ypter → Yq11.221::Xp22.33 → Xpter).ish der(Y) (Yptel+,Ycen+,RP11-529I21+,RP11-506M9-Yqtel −,Xptel +). arrXp22.33p22.31(702–8,395,963, 8,408,289x1), Yq11.221q12 (14,569,317x1, 14,587,321–57,440,839x0)  相似文献   

6.
A Y-autosome translocation--46,X,t(Y;7)(q122;q111)--in a steril man is reported and compared with others already reported in the literature.  相似文献   

7.
Summary Report of a supernumerary extra chromosome der(11;22)(q23; q12) resulting from a balanced translocation in the mother. The propositus suffers from mental deficiency, deafness and extreme muscular weakness and exhibits cleft palate, a labial lymphangioma and an atrial septum defect. Since the features of partial trisomy 11q23 frequently associated with a translocation t(11q;22q) bear similarities with the cases of so called trisomy 22 one might conjecture that some of these observations are in fact products of translocations including partial 11q.  相似文献   

8.
Understanding the segregational behaviour of reciprocal tranlocations in man is of both theoretical and clinical importance. Generally, information for genetic counselling is obtained from empirical data although knowledge of gametic output can now be obtained by karyotyping individual human spermatozoa. However, neither empirical studies nor sperm karyotyping data provide detailed information on how the combinations of normal, balanced and unbalanced gametes arise. For this knowledge of quadrivalent orientation and first meiotic segregation is required. We have used dual colour fluorescence in situ hybridisation (FISH) to identify normal and derived chromosomes during meiosis in testicular biopsy material from a 46,XY,t(15;20)(q11.2;q11.2) heterozygote. We were able to determine the frequencies of different quadrivalent structures at first metaphase (MI) and the proportion of first meiotic divisions subject to interstitial chiasmata. Having identified all 2:2, 3:1 and 4:0 segregation products at second metaphase, it was possible to correlate segregation categories with the various forms of MI quadrivalent possibly indicating their modes of orientation. Finally the ratios of normal:balanced:unbalanced gametes expected to be produced by this translocation heterozygote were calculated.by T.C. Hsu  相似文献   

9.
A female patient with a structurally abnormal idic(Y) (p11.32) chromosome was studied using fluorescence in situ hybridization and PCR to define the precise position of the breakpoint. The patient had a complex mosaic karyotype with eight cell lines and at least two morphologically distinct derivatives from the Y chromosome. The rearrangement was a result of a meiosis I exchange between sister chromatids at the pseudoautosomal region, followed by centromere misdivision at meiosis II. Due to instability of the dicentric Y chromosome, new cell lines later arose because of mitotic errors occurring during embryonic development. Physical examination revealed a normal female phenotype without genital ambiguity, a normal uterus and rudimentary gonads which were surgically removed.  相似文献   

10.
An infant with ambiguous genitalia was found to have a karyotype 45,X/46,X,r(Y)(p11.2;q11.23)/47,X,idic(Y)(p11.2),idic(Y)(p11.2) using G-banding, C-banding and FISH. Examination of the genitalia revealed a phallus measuring 1.5 cm in length and 0.5 cm wide with perineal orifice. Subtle phenotypic features consistent with Turner syndrome were not present. Genital ultrasonography revealed the presence of an infantile uterus. Endoscopy of the vagina, uterus and cervix appeared normal.  相似文献   

11.
We report on a twenty-two months old male patient with hypotonia, mental and motor retardation and trigonocephaly. Standard GTG banding chromosomal analysis (from metaphyses of a periferal blood lymphocyte culture) showed 46,XY, der(9) monosomy 9pter-->p22, trisomy 10q26--> qter karyotype. This unbalanced translocation resulted from the father's t(9,10) (p22;p26) karyotype. Deletions of the terminal part of 9p and partial trisomy of chromosome 10q are rare chromosomal disorders. To our knowledge, this is the first case report in the literature of a deletion of 9pter-->p22.3 and a duplication of 10q26-->qter. We assume that the clinical anomalies are due to der(9) monosomy 9pter-->p22, trisomy 10q-->26qter.  相似文献   

12.
Structural chromosome abnormalities in spermatozoa represent an important category of paternally transmittable genetic damage. A couple was referred to our centre because of repetitive abortions and the man was found to be a carrier of a reciprocal translocation t(3;11)(q27.3;q24.3). A tailored fluorescence in situ hybridisation (FISH) approach was developed to study the meiotic segregation patterns in spermatozoa from this translocation carrier. A combination of three DNA probes was used, a centromeric probe for chromosome 11, a cosmid probe for chromosome 11q and a YAC probe for chromosome 3q. The frequency of spermatozoa carrying an abnormal chromosome constitution was compared with baseline frequencies in control semen specimens and it was found that a significantly higher percentage of spermatozoa carried an abnormal constitution for the chromosomes involved in the translocation. A normal or balanced chromosome constitution was found in 44.3% of the analysed spermatozoa, while the remainder exhibited an abnormal chromosome constitution reflecting different modes of segregation (15.9% adjacent I segregation, 6.5% adjacent II segregation, 28.9% 3 : 1 segregation, 0.8% 4 : 0 segregation, 3.6% aberrant segregation). The frequency of aneuploidy for chromosomes X, Y, 13 and 21 was assessed using specific probes but there was no evidence of interchromosomal effects or variations in the sex ratio in spermatozoa from the translocation carrier. In conclusion, structural aberrations can be reliably assessed in interphase spermatozoa using unique DNA probe cocktails, and this method provides insight into the genetic constitution of germ cells and enables evaluation of potential risks for the offspring. Received: 19 September 1997 / Accepted: 27 October 1997  相似文献   

13.
A 20-month-old infant exhibiting psychomotor retardation, dysmorphisms and ambiguous external genitalia was found to have a 46-chromosome karyotype including a normal X chromosome and a marker Y with most of Yq being replaced by an extra Xp21-->pter segment. The paternal karyotype (G and C bands) was 46,XY. The marker Y composition was verified by means of FISH with a chromosome X painting, an alphoid repeat and a DMD probe. Thus, the final diagnosis was 46,X,der(Y)t(X;Y)(p21;q11)de novo.ish der(Y)(wcpX+,DYZ3+,DMD+). The patient's phenotype is consistent with the spectrum documented in 13 patients with similar Xp duplications in whom sex reversal with female or ambiguous genitalia has occurred in spite of an intact Yp or SRY gene. A review of t(X;Y) identifies five distinct exchanges described two or more times: t(X;Y)(p21;q11), t(X;Y)(p22;p11), t(X;Y)(p22;q11-12), t(X;Y) (q22;q12), and t(X;Y)(q28;q12). These translocations probably result from a recombination secondary to DNA homologies within misaligned sex chromosomes in the paternal germline with the derivatives segregating at anaphase I.  相似文献   

14.
15.
BACKGROUND: For chronic myeloid leukemia, the FISH detection of t(9;22)(q34;q11) in interphase nuclei of peripheral leukocytes is an alternative method to bone marrow karyotyping for monitoring treatment. With automation, several drawbacks of manual analysis may be circumvented. In this article, the capabilities of a commercially available automated image acquisition and analysis system were determined by detecting t(9;22)(q34;q11) in interphase nuclei of peripheral leukocytes. METHODS: Three peripheral blood samples of normal adults, 21 samples of CML patients, and one sample of a t(9;22)(q34;q11) positive cell-line were used. RESULTS: Single nuclei with correctly detected signals amounted to 99.6% of nuclei analyzed after exclusion of overlapping nuclei and nuclei with incorrect signal detection. A cut-off value of 0.84 mum was defined to discriminate between translocation positive and negative nuclei based on the shortest distance between signals. Using this value, the false positive rate of the automated analysis for negative samples was 7.0%, whereas that of the manual analysis was 5.8%. Automated and manual results showed strong correlation (R(2) = 0.985), the mean difference of results was only 3.7%. CONCLUSIONS: A reliable and objective automated analysis of large numbers of cells is possible, avoiding interobserver variability and producing statistically more accurate results than manual evaluation.  相似文献   

16.
Meiotic segregation, recombination, and aneuploidy was assessed for sperm from a t(1;10)(p22.1;q22.3) reciprocal translocation carrier, by use of two multicolor FISH methods. The first method utilized three DNA probes (a telomeric and a centromeric probe on chromosome 1 plus a centromeric probe on chromosome 10) to analyze segregation patterns, in sperm, of the chromosomes involved in the translocation. The aggregate frequency of sperm products from alternate and adjacent I segregation was 90.5%, and the total frequency of normal and chromosomally balanced sperm was 48.1%. The frequencies of sperm products from adjacent II segregation and from 3:1 segregation were 4.9% and 3.9%, respectively. Reciprocal sperm products from adjacent I segregation deviated significantly from the expected 1:1 ratio (P < .0001). Our assay allowed us to evaluate recombination events in the interstitial segments at adjacent II segregation. The frequencies of sperm products resulting from interstitial recombination in chromosome 10 were significantly higher than those resulting from interstitial recombination in chromosome 1 (P < .006). No evidence of an interchromosomal effect on aneuploidy was found by use of a second FISH method that simultaneously utilized four chromosome-specific DNA probes to quantify the frequencies of aneuploid sperm for chromosomes X, Y, 18, and 21. However, a significant higher frequency of diploid sperm was detected in the translocation carrier than was detected in chromosomally normal and healthy controls. This study illustrates the advantages of multicolor FISH for assessment of the reproductive risk associated with translocation carriers and for investigation of the mechanisms of meiotic segregation of chromosomes.  相似文献   

17.
We report the clinical and molecular investigations in a girl with 46,X,-X,+der(X)t(X;Y)(p22;q11) de novo karyotype who presented an intricate phenotype characterized by mental retardation and facial dysmorphisms in combination with short stature. The structure of the derivative X chromosome was studied using BAC array-CGH which disclosed the Xp22 breakpoint between the STS and the VCX3A gene and the presence of the Yq11.1qter chromosome. It is common that females with Xp;Yq translocations present only short stature and are normal in every other aspect. Thus, this would be the first case in which a girl with Xp;Yq translocation presents an unusual phenotype with intermediate male clinical features with Xp;Yq translocations. The risk of developing gonadoblastoma in females with Y chromosome material is also discussed and, to this effect, different explanations related to this apparent variation are also presented.  相似文献   

18.
Translocation t(11;22)(q23;q11) is the most common constitutional reciprocal translocation in man. Balanced carriers are phenotypically normal, except for decreased fertility, an increased spontaneous abortion rate and a possible predisposition to breast cancer in some families. Here, we report the high resolution mapping of the t(11;22)(q23;q11) breakpoint. We have localised the breakpoint, by using fluorescence in situ hybidisation (FISH) walking, to a region between D11S1340 and WI-8564 on chromosome 11, and D22S134 and D22S264 on chromosome 22. We report the isolation of a bacterial artificial chromosome (BAC) clone spanning the breakpoint in 11q23. We have narrowed down the breakpoint to an 80-kb sequenced region on chromosome 11 and FISH analysis has revealed a variation of the breakpoint position between patients. In 22q11, we have sequenced two BACs (BAC2280L11 and BAC41C4) apparently mapping to the region; these contain low copy repeats (LCRs). Southern blot analysis with probes from BAC2280L11 has revealed different patterns between normal controls and translocation carriers, indicating that sequences similar/identical to these probes flank the translocation breakpoint. The occurrence of LCRs has previously been associated with genomic instability and "unclonable" regions. Hence, the presence of such repeats renders standard translocation breakpoint cloning techniques ineffective. Thus, we have used high resolution fiber-FISH to study this region in normal and translocation cases by using probes from 22q11, LCRs and 11q23. We demonstrate that the LCR containing the gap in 22q11 is probably substantially larger than the previous estimates of 100 kb. Using fiber-FISH, we have localised the breakpoint in 22q11 to approximately 20-40 kb from the centromeric border of the LCR (i.e. the telomeric end of AC006547) and have confirmed the breakpoint position on 11q23.  相似文献   

19.
The 11q;22q translocations, whatever the breakpoints may be, are of particular interest because of their propensity to 3:1 segregation of the chromosomes at meiosis I. Until now, no unbalanced karyotype resulting from 2:2 adjacent segregation was published among offspring of 11q;22q translocation carriers. The authors report the case of an unbalanced karyotype due to adjacent 1 segregation of a maternal translocation (11;22)(q23.3;q13.2). The proband's karyotype was 46,XX,-22,+der(22)(11;22)(q23.3;q13.2)mat. This finding demonstrates that adjacent 1 segregation is possible in t(11;22) with breakpoints at 11q23 and 22q13, and can lead to birth of viable infants.  相似文献   

20.
We report two infertile brothers presenting with azoospermia and oligozoospermia. Cytogenetic studies using G-banding and FISH analysis on lymphocyte cultures revealed an autosomal balanced reciprocal translocation t(1;22)(q11;p11) in both males. The same translocation was found in their mother, but not in a third fertile brother and maternal uncle suggesting that this translocation might compromise the male but not the female gametogenesis in this family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号