首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Synthesis of glutamate, the cell's major donor of nitrogen groups and principal anion, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis, the gltAB operon, encoding glutamate synthase, requires a specific positive regulator, GltC, for its expression. In addition, the gltAB operon was shown to be repressed by TnrA, a regulator of several other genes of nitrogen metabolism and active under conditions of ammonium (nitrogen) limitation. TnrA was found to bind directly to a site immediately downstream of the gltAB promoter. As is true for other genes, the activity of TnrA at the gltAB promoter was antagonized by glutamine synthetase under certain growth conditions.  相似文献   

3.
A Bacillus subtilis mutant that produced glutamine synthetase (GS) with altered sensitivity to DL-methionine sulfoximine was isolated. The mutation, designated glnA33, was due to a T.A-to-C.G transition, changing valine to alanine at codon 190 within the active-site C domain. Altered regulation was observed for GS activity and antigen and mRNA levels in a B. subtilis glnA33 strain. The mutant enzyme was 28-fold less sensitive to DL-methionine sulfoximine and had a 13.0-fold-higher Km for hydroxylamine and a 4.8-fold-higher Km for glutamate than wild-type GS did.  相似文献   

4.
In Bacillus subtilis, the activity of the nitrogen regulatory factor TnrA is regulated through a protein- protein interaction with glutamine synthetase. During growth with excess nitrogen, the feedback-inhibited form of glutamine synthetase binds to TnrA and blocks DNA binding by TnrA. Missense mutations in glutamine synthetase that constitutively express the TnrA-regulated amtB gene were characterized. Four mutant proteins were purified and shown to be defective in their ability to inhibit the in vitro DNA-binding activity of TnrA. Two of the mutant proteins exhibited enzymatic properties similar to those of wild-type glutamine synthetase. A model of B. subtilis glutamine synthetase was derived from a crystal structure of the Salmonella typhimurium enzyme. Using this model, all the mutated amino acid residues were found to be located close to the glutamate entrance of the active site. These results are consistent with the glutamine synthetase protein playing a direct role in regulating TnrA activity.  相似文献   

5.
6.
7.
8.
9.
10.
Bacillus subtilis pur operon expression and regulation.   总被引:9,自引:2,他引:7       下载免费PDF全文
  相似文献   

11.
12.
13.
14.
15.
The Bacillus subtilis gltAB operon, encoding glutamate synthase, requires a specific positive regulator, GltC, for its expression and is repressed by the global regulatory protein TnrA. The factor that controls TnrA activity, a complex of glutamine synthetase and a feedback inhibitor, such as glutamine, is known, but the signal for modulation of GltC activity has remained elusive. GltC-dependent gltAB expression was drastically reduced when cells were grown in media containing arginine or ornithine or proline, all of which are inducers and substrates of the Roc catabolic pathway. Analysis of gltAB expression in mutants with various defects in the Roc pathway indicated that rocG-encoded glutamate dehydrogenase was required for such repression, suggesting that the substrates or products of this enzyme are the real effectors of GltC. Given that RocG is an enzyme of glutamate catabolism, the main regulatory role of GltC may be prevention of a futile cycle of glutamate synthesis and degradation in the presence of arginine-related amino acids or proline. In addition, high activity of glutamate dehydrogenase was incompatible with activity of TnrA.  相似文献   

16.
Role of CodY in regulation of the Bacillus subtilis hut operon.   总被引:6,自引:2,他引:4       下载免费PDF全文
Bacillus subtilis mutants deficient in amino acid repression of the histidine utilization (hut) operon were isolated by transposon mutagenesis. Genetic characterization of these mutants indicated that they most likely contained transposon insertions within the codVWXY operon. The codY gene is required for nutritional regulation of the dipeptide permease (dpp) operon. An examination of hut expression in a delta codY mutant demonstrated that amino acid repression exerted at the hutOA operator, which lies immediately downstream of the hut promoter, was defective in a delta codY mutant. The codY gene product was not required for amino acid regulation of either hut induction or the expression of proline oxidase, the first enzyme in proline degradation. This indicates that more than one mechanism of amino acid repression is present in B. subtilis. An examination of dpp and hut expression in cells during exponential growth in various media revealed that the level of CodY-dependent regulation appeared to be related to the growth rate of the culture.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号